汎用三次元 FEM に二相系支配方程式を導入した液状化解析手法

その2 杭基礎を対象とした遠心力載荷実験の再現シミュレーション

岩井 創*1·柴田 景太*1·宇野 浩樹*2·船原 英樹*1

Keywords: liquefaction, pile foundation, centrifuge test, u-w formulation, Stress-Density model, 3D effective stress analysis 液状化, 杭基礎, 遠心力載荷実験, u-w 定式化, Stress-Density モデル, 三次元有効応力解析

1. はじめに

臨海部の埋立地や河口付近の沖積地盤などの,砂質 土が緩く堆積し,地下水位が高い地盤では,地震時に 液状化が発生する可能性がある。このような液状化地 盤中に杭基礎構造物を計画する場合,杭の損傷による 上部構造物の沈下や傾斜が生じないように,液状化地 盤及び杭の挙動を正確に評価して締固め改良などの適 切な対策を行う必要がある。

液状化地盤と杭の地震時挙動を評価する有力な手法 として,地下水の存在を考慮した三次元有効応力解析 (液状化解析)がある。その2では,その1¹⁾で紹介し た有効応力解析機能(二相系支配方程式及び三次元弾 塑性構成則)を導入した汎用構造解析プログラム TDAPIIIを用いて,地盤と杭基礎を対象とした遠心力載 荷実験²⁾の再現シミュレーションを実施する。そして, 地盤における過剰間隙水圧の上昇過程や杭に作用する 力を実験結果と比較することによって,新規導入機能 による実現象の再現性を検証する。

2. 実験概要

実験は、表層地盤の締固め改良範囲が杭の地震時挙 動に及ぼす影響を調べるために実施したものであり、 未改良地盤から締固め改良地盤への透水や、杭と液状 化地盤の相互作用を検証するために解析対象として選 定した。改良範囲の異なる3つのケースを対象とし (図-1)、締固め改良を施さないケースを「改良なし」、 構造物の外側に改良深さの1/2の余改良を施したケース を「標準改良」、構造物直下のみを締め固めたケースを 「直下改良」と呼ぶ。遠心加速度は50G(模型縮尺

*1 技術センター 都市基盤技術研究部 防災研究室*2 技術センター 社会基盤技術研究部 地盤研究室

1/50) であり、寸法は実スケールで示している。

地盤材料には豊浦砂を用い,締固め改良部分及び深 部地盤の相対密度をDr=90%,未改良部分の相対密度を Dr=60%としてせん断土槽中に作製した。飽和地盤の間 隙流体にはシリコーンオイルを用い,粘性を水の50倍 とした。上部構造物(質量:約3.9kg)を支える4本の 杭は中空のステンレス製であり,杭径は500mm,板厚 は15mm である。入力地震動には,最大加速度を約 120cm/s²に調整した臨海波を用いた。図-2 に改良なし のケースで計測した振動台の加速度時刻歴を示す。

3. 解析概要

改良なしの解析モデルを図-3 に示す。地盤を八節点 六面体要素で、杭と上部構造物を梁要素でモデル化し た。また、対称性を考慮してハーフモデルとしている。

せん断土槽のフレームを模擬するために設定した境 界条件を以降に示す。ただし、間隙水の自由度は土骨 格に対する間隙水の平均相対変位¹⁾で表している。土 骨格側については、図-3 実線部分に位置する同深度の 節点の x 方向自由度を同変位とし、図-3 点線部分に位 置する節点の y 方向自由度を固定とした。間隙水側に ついてはフレーム外に水が移動しないよう、実線、点 線部分の x, y 方向の自由度を固定とした。底面境界は、 節点の土骨格側と間隙水側の x, y, z 方向自由度を全て固 定している(一点鎖線部)。

杭-地盤間の境界条件を図-4 に示す。杭に隣接する地 盤要素の節点の土骨格側自由度と,同じ深度における 梁要素の節点の自由度をx方向,y方向でそれぞれ同変 位とし,杭径の影響を考慮できるようにした。また, 杭径を直径とする円の接線に沿って水が流れるように,

表-1 Sc の値 Table 1 Value of Sc Dr=60%の要素のSc Dr=90%の要素のSc 0.00148~0.00176 0.00136~0.00276 → 文献³⁾の豊浦砂(Dr=60%) ---- Dr=60% 0.4 0.35 拘束圧:60kN/m² 0.3 比 ん断応力 0.25 0.2 0.15 Þ 0.1 0.05 0 1 10 100 1000 繰り返し回数(回) 図-5 液状化強度曲線 Fig.5 Liquefaction strength curve

杭に隣接する地盤要素の節点の間隙水側自由度(x方向, y方向)を設定した。土骨格側も間隙水側も,z方向自 由度には特に制限を設けていない。なお,杭先端条件 はピンとした。

弾塑性構成則である Stress-Density モデル(以下, SD モデル)のパラメータは、ダイレタンシーパラメータ の Sc を除き文献³⁾のものを用い, Sc は実験で得られた 過剰間隙水圧比をある程度再現できるように設定し, 深度ごとに Sc を変更した。Sc の値を表-1に示し、モデ ルの中央深度付近の拘束圧で評価した液状化強度曲線 を図-5 に示す。また、豊浦砂(Dr=60%)の液状化試験 結果³⁾も併せて示している。本解析ではモデルの液状 化強度は結果的に小さめになっている。

4. 解析結果

4.1 過剰間隙水圧

図-6 に地盤の過剰間隙水圧の時刻歴を実験と解析で 比較して示す。改良なし,標準改良については間隙水 の平均相対変位を考慮する排水条件の解析結果を示し ており,直下改良については排水条件の結果に加え, 間隙水の平均相対変位を考慮しない非排水条件の結果 も示している。実験では G.L.-6.75m の水圧計のデータ, 解析では水圧計と概ね同深度の要素(中心深度 G.L. -6.5m)の応答を示している。実験結果をケースごとに 比較すると,締固めの有無による水圧上昇の差異が小 さい。これは実験で意図したものではなく,締固め改

大成建設技術センター報 第56号(2023)

Fig.6 Excess pore water pressure time histories

良をした模型地盤の作製過程で密度が想定よりも小さ くなっていた可能性があると考えている。一方,排水 条件の解析結果を見ると,改良なしのケースで最も早 く,次いで改良範囲の狭い直下改良のケースで若干遅 れて水圧が初期有効上載圧に概ね達している。これら2 つのケースの排水条件下における最終的な水圧上昇は, 概ね実験結果を再現できている。それに対し,改良範 囲が広い標準改良のケースでは水圧が初期有効上載圧 に達しておらず,実験の水圧上昇と差がみられる。締 固め改良をした2ケースにおいて,同じ液状化強度を 与えている改良地盤の水圧上昇が異なった要因につい て以下で考察する。

図-7 に各解析ケースにおける過剰間隙水圧比のコン タ(時刻 60s)を示す。直下改良のケースについては, 時刻歴と同様に非排水条件下の解析結果も示す。手前 に表示している面は,モデルの対称面である。図-

図-7 過剰間隙水圧比のコンタ Fig.7 Contour of excess pore water pressure ratio

7(b)(c)より,標準改良,直下改良(排水)ともに締固 めた範囲(黒枠)の中央部分で過剰間隙水圧が上昇し きっていない領域がある一方で、未改良部分に近い領 域では水圧が上昇しきっている領域も見受けられ、未 改良部分の過剰間隙水圧が伝わっている影響が示唆さ れる。非排水条件のコンタ(図-7(d))を見ると、未改 良部分と締固め改良部分の間で過剰間隙水圧の上昇に 明瞭な差がみられ、時刻歴(図-6(d))において非排水 条件の解析結果と実験結果に差異があることからも, 排水条件の計算において間隙水の浸透が再現できてい ると考えられる。解析における間隙水の浸透の方向を 把握するために、図-8 に直下改良のケースにおける G.L.-6.0mの間隙水の平均相対変位ベクトルを示す。未 改良部分から締固め改良部分に向かって間隙水が移動 しており、ここまでの考察と調和的である。

なお、実験の水圧上昇過程をより高い精度で再現す るためには、パラメータ決定の際に液状化強度のみで はなく、液状化に伴う透水係数の変化等も考慮する必 要があると考えられ、更なる検討が必要である。

4.2 杭の曲げモーメント

図-9 に杭頭曲げモーメントの時刻歴を実験と解析で 比較して示す。時刻30s以降に着目すると、改良なしで は解析と実験の振幅に差異がみられるものの、他のケ ースでは振幅, 位相共に両者は概ね対応している。図-10 に杭頭に作用する慣性力に対応する上部構造物の加 速度時刻歴(時刻 60s から 80s を抽出)を示す。特に差 異が大きい時刻67s付近において、実験での改良なしの 上部構造物加速度が締固め改良をした 2 ケースよりも 大きくなっており、これが差異の要因と考えられる。

図-11 に杭の最大曲げモーメントの深度分布を示す。 実験、解析ともに分布形状は概ね対応しており、地中 部において改良による曲げモーメントの低減効果が見 られる。これは、締固め改良により地盤変位が抑制さ れた影響と考えられる。杭頭部に着目すると、実験で は改良の有無による杭頭曲げモーメントの差がみられ るのに対し,解析では差が小さい。解析の杭頭曲げモ ーメントが最大となる時刻75s付近について、解析の上 部構造物加速度を見ると,改良なし,直下改良,標準 改良の順に加速度が大きくなっている(図-10)。すな わち、改良に伴って構造物慣性力が大きくなり、杭頭 曲げモーメントを増大させる効果があることが分かる。 一方で、改良に伴って地盤変位は抑制され、杭頭曲げ モーメントを低減させる効果もあると考えられ、前述 の増大効果と打ち消しあって差が小さくなったと考え られる。

70

時間(s)

75

65

50

-50

60

大成建設技術センター報 第56号(2023)

4.3 杭に作用する水平地盤反力

最後に,液状化地盤と杭の地震時の力のやり取りを より詳細に把握するため,杭に作用する水平地盤反力 に着目する。水平地盤反力は,実験では杭の曲げモー メントを深度方向に 2 回微分することによって算出し, 解析ではせん断力を深度方向に 1 回微分することによ って算出した。図-12 に地盤の浅部と深部における水平 地盤反力の時刻歴を実験と解析で比較して示す。ここ では,地盤が杭を右向きに押す力を正としている。液 状化後の時刻に着目すると,直下改良の浅部で実験の 地盤反力が負の方向にドリフトしていることを除き, 振幅,位相ともに実験と解析が概ね対応している。実 験でドリフトが起こった要因としては,地盤の微小な 傾きや,改良地盤の側方へのはらみだし等が考えられ る。

図-13 に水平地盤反力の同時刻深度分布を示す。深部

図-14 上部構造物慣性力と水平地盤反力の方向の関係 Fig.14 Relation between direction of superstructure inertia force and horizontal ground reaction force

の解析結果(図-12(d)(e)(f))で液状化後に地盤反力が最 大になるピークに着目している。なお、標準改良の実 験結果の G.L.-3m, G.L.-4.5m, G.L.-6.75m 及び直下改 良の実験結果のG.L.-4.5m, G.L.-6.75m については, 基 線補正を行って振動成分のみを抽出したものを用いて いる。3ケースとも分布形状が実験と解析で概ね一致し ている。上部構造物の加速度(図-10)に着目すると、 選んだ時刻では、加速度の正負より改良なしで右向き に、標準改良及び直下改良で左向きに慣性力が働いて いる。図-13より、杭頭直下では慣性力と同じ向きに地 盤反力が作用しており,深部地盤の地盤反力はそれと 逆向きに作用していることが分かる。よって、図-14 に 示すように, 液状化した表層地盤は慣性力と同じ向き に杭を押しており, 深部地盤は慣性力と表層の地盤変 位に起因する力に抵抗していると考えられる。ここで は詳細を割愛するが, 杭周辺の表層地盤変位と上部構 造物の変位に着目すると、どちらの変位も同方向であ り、かつ表層地盤変位の方が大きいという結果が得ら れており, 表層地盤が慣性力と同じ向きに杭を押して いるという考察と調和的である。

また,締固め改良をしたケースよりも改良なしのケ ースで深部の地盤反力が大きくなっているのは,改良 なしでは表層地盤が全面的に液状化したことによって, より深い深度まで地盤が杭を慣性力と同じ方向に押し ており,それに抵抗したためと考えられる。

5. まとめ

二相系支配方程式と三次元弾塑性構成則を導入した TDAPIIIを用いて、締固め改良によって液状化対策した 杭基礎を対象に遠心力載荷実験の再現シミュレーショ ンを行い、実験結果と比較することで新規導入機能に よる実現象の再現性について検証した。二相系支配方 程式の導入により要素間の間隙水の浸透を表現できる ようになったことで、液状化した未改良地盤から締固 め改良地盤に間隙水が移動する現象を再現可能となっ た。また、地盤の過剰間隙水圧、杭の曲げモーメント、 杭に作用する水平地盤反力について実験結果を概ね再 現できていることを確認した。

今後は,格子状地盤改良など他の液状化対策工法も 対象に解析を行うことで,解析機能を更に検証し,合 理的な液状化対策の設計や新工法の開発に活用してい く予定である。また,引き続きプログラムの改良を重 ねることにより,解析精度の向上を図り,より大規模 なモデルを対象とした解析の実現を目指す。

参考文献

- 宇野浩樹ほか:汎用三次元 FEM に二相系方程式を導入した液状化解析手法 その1 二相系支配方程式の定式化と液状化地盤の弾塑性構成則,大成建設技術センター報, 第 56 号,31,2023.
- 2) 船原英樹,柴田景太,長尾俊昌,真島正人:締固めによ る液状化対策の施工範囲が杭の地震時挙動に及ぼす影響 に関する遠心力載荷実験(その1)実験の概要,日本建築 学会大会学術講演梗概集,B-1,pp.533-534,2007.
- Cubrinovski, M. and Ishihara, K : State concept and modified elastoplasticity for sand modelling, Soils and Foundations, Vol. 38, No4, pp.213-225, 1998.