T-M ダンパー[®]用ロングストロークオイルダンパーの 圧縮力に対する健全性検証

石川 義幸*1・青野 翔*1・谷 翼*1・野口 裕介*2・ 隈部 敦史*2・渡辺 征晃*2・長谷川 達也*3・木村 雄一*4

Keywords: TMD for earthquake, oil damper, compression test, buckling safety, long period ground motion 地震用 TMD, オイルダンパー, 圧縮試験, 座屈安全性, 長周期地震動

1. はじめに

2011 年に発生した東北地方太平洋沖地震では,震源 から離れた関東・関西地方において長周期地震動によ る超高層建物の大振幅な揺れが観測され,建物の在館 者に不安を与えた。また 2016 年に南海トラフ沿いの巨 大地震で発生が予想される長周期地震動に対する新築 の超高層建物の検討が課され,長周期地震動対策の重 要性が増している¹⁾。当社では超高層建物の長周期地 震動の対策技術として T-M ダンパーを開発した²⁾。T-M ダンパーは建物頂部に設置される多段振り子型の制振 装置であり,従来の装置と比較して軽量な錘が大振幅 で振動することにより建物に高い減衰性能を付与する。 T-M ダンパーは図-1 のようにワイヤーで懸架されたフ レームや錘と,フレームや錘の間に直列に接続された 専用のロングストロークのオイルダンパーで構成され る。

T-M ダンパーは建物頂部に設置されるため,地震時 には建物内で増幅された水平・上下振動が入力される。 近年,従来よりも高い超高層建築物が計画されるよう になり, T-M ダンパーの使用環境が厳しくなっている。

T-M ダンパーのオイルダンパーは、大きな上下動を 受けながら水平方向に減衰力を発揮する重要な構成要 素である。上下動、および減衰力に対するオイルダン パーの筐体の健全性を検証するため、上下動に相当す る錘を付加したオイルダンパー試験体の静的な圧縮試 験を実施した。T-M ダンパーの上下方向の予備応答解

- *3 設計本部 構造計画部
- *4 設計本部

Fig. 2 Long-stroke oil damper

表-1 オイルダンパー諸元

Tab	ole 1	Oil c	lamper	specification
-----	-------	-------	--------	---------------

項目	数值	単位	
減衰係数	2.5	kN/kine	
最大変位	±1500	mm	
最大速度	180	kine	
最大減衰力	450	kN	

^{*1} 技術センター 都市基盤技術研究部 防災研究室*2 設計本部 構造設計第三部

析結果から、上下に±3G 程度の加速度が生じることを 想定した。本稿では試験の結果を示す。

2. ロングストロークオイルダンパー概要

ロングストロークオイルダンパーの概要を図-2,表-1に示す。オイルダンパーは川金コアテック製であり, ロッド・シリンダー・ピストンで構成され,シリンダ ー内は鉱物油で充填されている。このダンパーには① 片ロッドであること,②ダンパー圧縮時・引張時に作 動油の流れる向きが切り替わるバイフロー型であるこ と,③減衰特性が線形であること,④ストロークが± 1500mm と従来の免震用オイルダンパーと比べて長い という特徴がある。大きなストロークを実現するため, 中立位置でのダンパー全長を 5620mm,最伸長時に 7120mm としている。ダンパーの軸力により筐体を座 屈・降伏させないために,断面が小さいロッドには降 伏応力度 785N/mm²級の高強度鋼材を採用している。

3. 実験概要

3.1 試験体概要

オイルダンパー自身の地震時上下慣性力と水平減衰 カに対し、筐体が座屈・降伏しないことを確認するた め、最伸長に伸ばしたオイルダンパーの静的な圧縮試 験を行う。オイルダンパーは速度に比例した力を発揮 するため、最大減衰力はダンパーの中立位置付近で生 じるが、本試験では安全側の評価を与える、最伸長に 伸ばした試験体を用いる。なお、作動油を移動させな いために、オリフィスの開口を閉鎖した試験体を用い る。

試験体は図-3 に示すように一端を反力壁,もう一端 を反力床に固定されたアクチュエータに接続する。ア クチュエータ側のオイルダンパーのロッド側の端部は, 上下をリニアガイドでローラー支持された反力板を介 してロードセルやアクチュエータと直列に接続する。

3.2 試験ケース

本実験の試験ケースを表-2 に示す。オイルダンパー に定格減衰力 450kN の約 1.3 倍の 600kN の圧縮力を水 平に加える。なお、余力を確認するための Case5 では 700kN まで加力する。地震時にオイルダンパーに生じ る上下の慣性力に相当する、自重の最大 3 倍の錘をオ イルダンパーのシリンダー部分にチェーンを介して付 加する。自重に相当する錘の位置を図-4(a)に、自重の 2 倍、3 倍に相当する錘を付加する試験ケースの錘位置

を図-4(b)に示す。試験体と反力床の高さが限られていたため、自重の2、3倍に相当する錘を付加するケースではシリンダーに等間隔に錘を設置する。

3.3 計測概要

変位計測およびひずみ計測の概要を図-5,図-6に示 す。アクチュエータと直列に接続されたロードセルに よりオイルダンパーの軸力を計測する。ワイヤー式変 位計によりダンパーの軸方向変位と中央位置の鉛直方 向を計測する。3次元モーションキャプチャーシステム によりピストンの変位を計測する。ロッドが降伏しな いことを確認するため,図-6に示すロッドの5断面に 1断面4枚のひずみゲージを設置する。

4. 実験結果

4.1 軸力-変位関係

4.1.1 軸力-鉛直変位関係

オイルダンパー中央に鉛直に設置したワイヤー式変 位計の計測変位とオイルダンパー軸力の関係を図-7に 示す。軸力の増加に伴い変位が大きくなっているが, 除荷後は加力前の変位に戻っている。また,すべての ケースで履歴ループが小さい。最も鉛直変位が大きく なった+3G 相当の錘を載せて 700kN の加力をした時の 試験体の状況を写真-1 に示す。

4.1.2 軸力-軸方向変位関係

ロッド端部の反力板に設けたワイヤー式変位計で計 測した水平変位に対する軸力の関係を図-8(a)に示す。 すべてのケースで軸力-変位関係がバイリニア型になっ ている。

モーションキャプチャーで得られたピストンの変位 と軸力の関係を図-8(b)に示す。Casel ではモーション キャプチャーの計測不具合があったため,途中で計測 を終了している。軸力-ピストン変位関係は剛塑性に近

Fig. 7 Axial force-vertical displacement relationship

写真-1 錘+3G 相当 700kN 加力時変形 Photo. 1 Deformation of oil damper in the case of the application of weight equivalent to the 3G acceleration and 700kN axial force.

Fig. 8 Axial force-axial displacement relationship ____ Case4 #+36相当 ____ Case5 #+36相当 #h7700kN

大成建設技術センター報 第56号(2023)

Fig.9 Strain-axial force relationship

いバイリニア型の履歴となった。この履歴はピストン とシリンダー間の摩擦によるものと考えられ,錘の重 量にほぼ比例して静止摩擦力が増大している。軸力が 静止摩擦力を超えた後は,作動油の弾性変形によりピ ストン変位が生じるが,最大で 22mm 程度とロッドの 長さ 1560mm に対して十分に小さく,評価上問題にな らないことを確認した。水平変位からピストン変位を 引いた筐体の水平変位と軸力の関係を図-8(c)に示す。 筐体の軸力-変位関係では履歴面積,残留変位共に小さ い。

4.2 軸力-ひずみ関係

ロッドのひずみ計測値を図-9 に示す。錘が大きくな るに従って、断面の1、3 位置のひずみが大きくなる。 一方で2、4 位置のひずみは小さい。またシリンダーに 近い断面ほどひずみが大きくなっている。軸力-ひずみ 関係の履歴面積は小さい。+3G 相当の錘を付加して、 700kN まで軸力を作用させたときの荷重-ひずみ履歴を 図-10 に示す。600kN まで軸力を作用させたときと比較 して履歴ループが大きくなるが、除荷後の残留ひずみ はほとんどみられない。

4.3 軸力-曲げモーメント関係

計測したひずみ値から曲げモーメントを推測する。 ロッドを梁要素と仮定すると、ある断面のひずみ値は 式(1)のようになる。

$$\epsilon_i = \frac{N}{EA} + \frac{M_x}{EI_x} y_i \tag{1}$$

ここで、N:軸力、 M_x :曲げモーメント(x軸回り)、 ϵ_i :ひ ずみ度($i=1\sim4$)、 y_i :ひずみゲージy座標、E:ヤング係数、 A:断面積、 I_x :断面二次モーメント(x軸回り)である。 1 断面に貼った4枚のひずみゲージの計測値と、ロード セルによる軸力Nの計測値を用いる。ロッドは ϕ 130

maximum force application

表-3 ロッドE断面に作用する最大応力度

Table 3 Maximum compressive stress at E section on the rod

佰日	単位	Casel	Case2	Case3	Case4	Case5
項日		錘なし	錘+1G相当	錘+2G相当	錘+3G相当	錘+3G相当
軸力	kN	600	600	600	600	700
最大応力度	N/mm ²	230	422	563	723	896

の円形断面なので断面積Aは 1.3×10^4 mm²、断面二次モ ーメントは I_x , I_y ともに 1.4×10^7 mm⁴となる。ヤング係 数Eは 2.05×10^5 N/mm²とする。

最大軸力時の曲げモーメント分布を図-11に示す。最 大の曲げモーメントは, Case5の最大軸力時に 183kNm 程度生じた。

最大軸力時のひずみ計測値から最大の応力度を計算 した結果を表-3 に示す。最大応力度は錘+3G 相当で 700kNの軸力を作用させたときに 896N/mm²となった。 ミルシートに記載された降伏応力度が 940N/mm²なので, 計測した最大応力度は弾性範囲にとどまっている。

5. まとめ

T-M ダンパー用のオイルダンパーの筐体の,上下 動・減衰力に対する健全性を検証するために,最伸長 にしてオリフィスを閉じたオイルダンパーに錘を付加 して,静的圧縮試験を実施し,以下の結論を得た。

- 1) 減衰力の定格荷重 450kN の約 1.3 倍の軸力に対して 筐体に座屈や塑性変形が生じなかった。
- ピストン-シリンダー間に摩擦が生じるが筐体に与 える影響は小さかった。

謝辞

本実験を進めるにあたりご協力いただいた,株式会社川金 コアテック,光陽精機株式会社および株式会社コベルコ科研 の関係者の皆様に謝意を表します。

参考文献

- 国土交通省:超高層建築物等における南海トラフ沿いの巨 大地震による長周期地震動への対策について、2016.
- 2)欄木龍大,木村雄一,久保充司,平井潤,大和伸行,青野 翔,長島一郎:超高層建物用長周期地震対応マスダンパー の開発 その1 概要とオイルダンパー要素の性能検証, 日本建築学会大会学術講演梗概集,構造II,pp659-660, 2017.