SD490Head-bar の適用範囲拡大に向けた取り組み

吉田 昂平*1·山本 悠人*1·畑 明仁*2·村田 裕志*1·藍谷 保彦*3

Keywords : mechanical anchorage of high-strength rebar, pull-out test, cyclic loading test, plastic hinge, productivity improvement 高強度 Head-bar, 引抜き試験,正負交番載荷,塑性ヒンジ,生産性向上

はじめに 1.

機械式鉄筋定着工法は,鉄筋コンクリート構造物の 鉄筋端部に取り付けられたプレート等の定着具で機械 的に定着を確保する鉄筋を用いることで、従来の半円 形フックまたは鋭角フックを有する鉄筋の代替として 効率的に配筋が可能となる工法である。当社ではその 工法の一つである摩擦圧接型の機械式鉄筋定着工法 「Head-bar」を他社に先んじて開発し、1999 年に国内 で初めて(財)土木研究センター(現在、一般財団法 人)より民間開発建設技術の技術審査・証明事業認定 規定に基づく認証 1を受けて以来,現在にわたり多く の出荷・施工実績を有している(図-1)。機械式鉄筋定 着工法は Head-bar の認証後に建設会社・鉄筋メーカー から様々な工法が開発され、2007年に土木学会より国 内初の指針である鉄筋定着・継手指針²⁾が発刊された。 その後,国交省のコンクリート工の生産性向上施策の

一環で日建連より「機械式鉄筋定着工法の配筋ガイド ライン」³⁾が発刊されて以降急激にその普及が進んでい る。2020年には土木学会の鉄筋定着・継手指針 4が改 定され、性能照査型設計の成熟を鑑み、適切に性能が 照査できる範囲においては幅広い適用が可能となる指 針になっている。そのためますます機械式鉄筋定着工 法の幅広い適用が進んでいくものと考えられる。Headbar はこのような背景もあり、幅広い適用範囲への要望

表-1 Head-bar の適用範囲(2021年改訂時) Table 1 Range in application of Head-bar

a)せん断補強鉄筋または中間帯鉄筋として使用する場合												
呼び名		D13	D16	D19	D22	D25	D29	D32	D35	D38	D41	D51
鉄筋の 種類	SD295	_	0	0	\bigcirc	0	0	0	\bigcirc	0	0	\bigcirc
	SD345	0	0	0	\bigcirc	0	0	0	\bigcirc	0	0	\bigcirc
	SD390	\bigcirc	\bigcirc	0	0	\bigcirc	0	\bigcirc	0	0	\bigcirc	\bigcirc
	SD490		\bigcirc									

○ : 適用可、- : 適用不可、疲労部材への適用は SD345 の D13~D19 に限る

呼て	バ名	D13	D16	D19	D22	D25	D29	D32	D35	D38	D41	D51
鉄筋の 種類	SD295	_	\bigcirc	0	0	\bigcirc	0	0		_	_	
	SD345	0	0	\bigcirc	0	0	0	0		_		_
	SD390	0	0	\bigcirc	0	0	0	0		_		
	SD490		_			\bigcirc	0	\bigcirc				

b)軸方向鉄筋として使用する場合

○:適用可、-:適用不可

* 1 技術センター 社会基盤技術研究部 材工研究室

*2 技術センター 社会基盤技術研究部

ブイ・エス・エル・ジャパン(株) * 3

にこたえるため,鉄筋母材の材質 SD390,490 の適用性, 様々なせん断補強鉄筋比での適用性,小型円形プレー トの適用性等,各種の性能を実験的・解析的に照査さ れてきた⁵⁾。表-1 に(一財)土木研究センターによる 建設技術審査証明における Head-bar の適用範囲(2021 年改訂時)⁵⁾を示す。

近年,土木構造物において耐震性能向上を目的に RC 構造物の配筋が複雑化・高密度化し,高強度鉄筋の利 用等による配筋の省力化,コンクリート打設を含めた 施工性の向上が必要になる場合が増えている。高強度 鉄筋を用いる配筋条件における部材の性能照査は鉄筋 エ・コンクリート工の施工性・生産性向上の観点から 非常に重要である。そこで高強度鉄筋である材質 SD490 の鉄筋を用いた SD490Head-bar に関して軸方向 鉄筋および塑性ヒンジ部への適用範囲拡大に向けて各 実験を通じてそれぞれの性能照査を実施した。本稿で は 2 章において高応力繰返し引抜き試験を,3 章にお いて RC 壁の正負交番載荷実験の内容とその照査結果 について示す。

SD490Head-bar の高応力繰返し引抜き 試験

2.1 実験概要

SD490Head-bar の定着部について抜出し変位量を確 認するため、コンクリートブロックに埋め込まれた SD490Head-bar の高応力繰返し引抜き試験を実施した。 対象は D38 および D51 の太径鉄筋とした。また、比較 のため、半円形フックの場合についても同様の引抜き 試験を実施した。試験体概要および載荷装置をそれぞ れ図-2,3 に示す。載荷パターンは鉄筋定着・継手指針 に準拠し、鉄筋母材の規格降伏強度の 95%を上限,2% を下限として静的に 30 回繰返し載荷を行った。その後, 規格引張強度まで載荷した。定着具の抜出し量につい ては、定着プレートの背面に溶接したワイヤーをシー スを通してブロックから出して計測した。半円形フッ クによる定着では鉄筋の折り曲げ加工の開始点にワイ

a)D51 SD490のHead-bar 定着具

b)試験体配筋状況

Table 2 Experiment cases and material properties in pull test								
実験 ケース	材質	呼び名	定着部	コンクリート強度 (N/mm ²)	鉄筋降伏 強度 (N/mm ²)	鉄筋引張 強度 (N/mm ²)		
D38_Hook	SD490	D38	半円形フック	31.2	519	706		
D38_Hb	SD490	D38	Head-bar	31.2	518	690		
D51_Hook	SD490	D51	半円形フック	29.3	571	740		
D51_Hb	SD490	D51	Head-bar	28.4	571	722		

表-2 引抜き試験における実験ケースおよび材料試験結果 Table 2 Experiment access and material properties in pull text

図-4 応力 - 抜出し変位関係 Fig.4 Stress-displacement relationship

表-3 抜出し変位量の比較

Table 3 Comparison of displacement							
実験	δ_1	δ ₃₀	δ_{30} - δ_1				
ケース	(mm)	(mm)	(mm)				
D38_Hook	1.202	1.890	0.688				
D38_Hb	0.298	0.662	0.364				
D51_Hook	2.344	4.026	1.682				
D51_Hb	0.702	1.380	0.678				

a)正面図・側面図

b)壁部 A-A 断面図および配筋状況 ※図はせん断補強鉄筋が Head-bar の場合

図-5 試験体の配筋および形状 Fig.5 Outline of specimen ヤーを溶接し,同様の手法で抜出し量を計測した。実 験ケース一覧および使用したコンクリートと鉄筋の材 料試験結果を表-2 に示す。

2.2 実験結果

ロードセルの荷重から換算した鉄筋に発生している 応力と,鉄筋の定着位置での抜出し変位関係を図-4 に, Head-bar とフック定着の抜出し変位量の比較を表-3 に 示す。鉄筋定着・継手指針において,高応力繰返し引 抜き試験における評価指標は,①30 回繰返し時の抜出 し変位量(δ_{30})および②30 回繰返し時の抜出し変位量 と1回繰返し時の抜出し変位量の差(δ_{30} - δ_1)の2 つが 定められている。D38 と D51 のいずれのケースにおい てもこれら指標の値は Head-bar の方が小さく,半円形 フックよりも定着性能が優れていたことが確認された。 また,鉄筋母材の規格引張強度まで載荷した場合にも 定着具の破断やコンクリートの破壊は確認されなかっ た。以上の結果より,太径の SD490Head-bar が半円形 フックと同等以上の高応力繰返し加力に対する定着性 能を有することが確認された。

せん断補強鉄筋に SD490Head-bar を適 用した壁部材の正負交番載荷

3.1 実験概要

SD490Head-bar を塑性ヒンジ部のせん断補強鉄筋に 適用した場合の RC 部材の靱性性能を確認するため, RC 壁部材をモデル化した試験体による正負交番載荷を 実施した。

3.1.1 試験体概要

試験体はせん断補強鉄筋に半円形フックを使用した

図-6 載荷装置 Fig.6 Loading set-up in cyclic loading test

表-4 試験体諸元								
Table 4 Condition of specimens								
実	ミ験ケース	Case1	Case2					
載荷帕	畐方向(mm)	64	40					
載荷直	角方向(mm)	10	40					
載荷	高さ (mm)	19	00					
	壮母,仕 墡	SD	390					
軸方向	竹貝・江徠	Head-bar						
鉄筋	本数一呼び名	16-D29						
	軸方向鉄筋比	1.54						
#1 +1	材好, 仕 垟	SD345						
<u> </u>	竹貝・江徠	両端 135° フック						
业大用力	鉄筋径@間隔	D16(<i>a</i>]150					
十八座		SD490	SD490					
はんめ	材質・仕様	半円形	Head-bar					
111733		フック						
野人用刀	本数一呼び名	4-D16						
軸	力(kN)	1331						
【基部』	芯力(N/mm ²)】	[2.0]						

表-5 コンクリートの物性値

Ta	ble 5 M	Material properties of concrete			
実験	硝	饉任係数	圧縮強度		
ケース		(MPa)	(N/mm^2)		
Case1		30900	38.9		
Case2		30600	40.2		

表-6 鉄筋の物性値

Table 6 Material properties of reinforcing bars							
	材質	呼び名	降伏強度	弹性係数 (MPa)			
			(N/mm^2)	(MPa)			
軸方向 鉄筋	SD390	D29	434	185000			
せん断 補強鉄筋	SD490	D16	554	180000			

D16

385

182000

試験体とせん断補強鉄筋に Head-bar を使用した試験体 の計 2 体を製作した。図-5 に試験体の配筋および形状 を示す。試験体の配筋は擁壁やボックスカルバート等 における一般的な配筋を想定している。横方向鉄筋に は,配力鉄筋とせん断補強鉄筋を用いており,これら が試験体断面内で閉合するように配置されることによ って,コアコンクリートの拘束および軸方向鉄筋の座 屈の抑制に寄与するものとした。また,せん断補強鉄 筋は試験体高さ方向に千鳥状に配置した。試験体諸元 および使用したコンクリートと鉄筋の材料試験結果を 表-4~表-6 に示す。

3.1.2 載荷方法

図-6 に載荷装置の側面図を示す。水平方向の加力は 試験体のねじれを抑制するため、2 つの水平ジャッキ で双方向から載荷を行う対向加力とした。

SD345

試験体への水平載荷は以下のステップで行った。ま ず,実材料強度から算出した降伏荷重の計算値 P_y (P_y =739.5kN)を基準に±1/3 P_y と±2/3 P_y までそれぞれ 1 回ずつ載荷した。その後,軸方向鉄筋のひずみを確認 しながら降伏変位 ($1\delta_y$)まで載荷した。降伏変位が 15mm と得られた後は,降伏変位の整数倍 ($2\delta_y$, $3\delta_y$, $4\delta_y$,・・・)の強制変位を与え,各荷重ステップで 3 回の正負繰返しを伴う漸増載荷を行った。

鉛直方向には基部応力が 2.0N/mm²となるように軸力 を載荷した。軸力は水平載荷中一定となるように制御 した。

3.2 実験結果

配力

鉄筋

3.2.1 荷重—変位関係および包絡線

図-7 に載荷点における水平荷重一水平変位関係を示

す。なお、図-7における縦軸の補正水平荷重は、基部 における軸力による偏心モーメントを水平荷重に換算 し、水平ジャッキの荷重に累加したものである。また、 図-7 には包絡線(水平荷重-水平変位関係において, 繰返し1回目の最大荷重点を結んだ曲線)および実材 料強度を用いてコンクリート標準示方書 の(以下,コ 示)に基づき算出した骨格曲線を併せて示している。 最大荷重は両試験体ともほぼ同程度であった。鉄筋定 着・継手指針では、水平荷重が降伏荷重(Pv=739.5kN) を下回らない最大水平変位を終局変位としている。本 実験において、繰返し1回目に着目した場合、Casel および Case2 における終局変位はそれぞれ 6δ_v および 7δ_vであり、Case2の方が靭性に優れる結果となった。 また、両試験体の実験値は、コ示に基づく伸びだしを 考慮した骨格曲線における最大荷重および終局荷重の 計算値をともに満足した。

3.2.2 履歴吸収エネルギー

図-8 に各ケースにおける履歴吸収エネルギーを示す。 ここで、履歴吸収エネルギーは荷重一変位曲線におけ る履歴曲線に囲まれた面積により算定した^{η}。Casel で は $6\delta_y$ の繰返し 3 回目で履歴吸収エネルギーの増加が 鈍化し、その後減少に転じた。一方で、Case2 では $7\delta_y$ の繰返し 2 回目で履歴吸収エネルギーが減少に転じた。

以上より、Case2 の方がエネルギー吸収について優れる結果となった。

3.2.3 損傷状況

表-7 に $5\delta_y \sim 7\delta_y$ における各試験体の損傷状況を示す。 5 δ_y 終了時までの損傷状況は概ね同程度であり、基部の 損傷が進行し、かぶりコンクリートの剥落が生じた。 一方、 $6\delta_y$ において、Casel では軸方向鉄筋の座屈によ り基部のかぶりコンクリートが大きくはらみだし、広 い範囲にわたりかぶりコンクリートが剥落した。Case2

	Casel (半円	<u>。</u>]形フック)	Case2 (Head-bar)			
載荷ステップ	正載荷時圧縮側	負載荷時圧縮側	正載荷時圧縮側 (半円形フック側)	負載荷時圧縮側 (定着プレート側)		
水平変位 -75mm (-5δ _y)						
水平変位 -90mm (-6ð _y)						
水平変位 -105mm (-7ð _y)						

表-7 損傷状況 Table 7 Damage to specimens

では、78yで軸方向鉄筋の座屈により壁部のかぶりコン クリートが広範囲にわたり剥落した。また、かぶりコ ンクリートの広範囲の剥落のタイミングは水平荷重が 低下したタイミング、吸収エネルギー量が低下したタ イミングと同時であった。Case1 と Case2 におけるこれ らの差異は半円形フックより Head-bar の方が軸方向鉄 筋の座屈を抑制する拘束力が大きいために生じたもの と考えられ、Head-bar を用いた部材の十分な靱性性能 を確認することができた。

4. まとめ

本稿では、SD490Head-bar の適用範囲拡大のため実施した高応力繰返し引抜き試験および RC 壁の正負交

※写真はすべて繰返し3回目終了時のもの

番載荷実験について示した。また、本稿で示した実験 結果より以下の知見を得た。

- (1) 高応力繰返し引抜き試験において、半円形フック と Head-bar の抜出し変位量を比較した結果、Headbar の方が引抜き量が小さく、定着性能が優れてい ることが確認された。また母材の規格引張強さま で加力した結果、定着部の破壊や周辺コンクリー トの破壊が生じず、健全な状態であることが確認 された。
- (2) RC 壁の正負交番載荷実験において、半円形フック 試験体と Head-bar 試験体の水平荷重一水平変位関 係を比較した結果、水平荷重は同程度となり、終 局変位は Head-bar 試験体の方が大きくなった。ま た、履歴吸収エネルギーを比較した結果、Head-bar

試験体の方がエネルギー吸収について優れる結果 となった。以上より, Head-bar を適用した RC 部材 の靭性性能は従来配筋(半円形フック)の RC 部材 より靱性性能が優れていることが確認された。

また, Head-bar の建設技術審査証明は 2022 年 12 月 に改訂された⁵⁾。改訂では,2章で示した高応力繰返し 引抜き試験の内容が反映され,D35 以上の太径鉄筋に ついて軸方向鉄筋への適用が可能となった。また,今 後は3章で示した RC 壁の正負交番載荷実験の内容も 追加し,SD490Head-bar の塑性ヒンジ部への適用も可 能とする予定である。

以上の内容が Head-bar の建設技術審査証明に反映され, SD490Head-bar の利用が広まることで, 土木工事 におけるさらなる施工性・生産性向上が期待される。

参考文献

- (財) 土木研究センター:プレート定着型せん断補強鉄
 筋「Head-bar」,土木系材料技術・技術審査証明報告書, 1999.
- 2) 土木学会:鉄筋定着・継手指針[2007 年版], コンクリートライブラリー128, 2007.
- 3) (一社)日本建設業連合会:機械式鉄筋定着工法の配筋 設計ガイドライン,2016
- 4) 土木学会:鉄筋定着・継手指針[2020 年版], コンクリー トライブラリー156, 2020
- 5) (一財) 土木研究センター: プレート定着型せん断補強 鉄筋「Head-bar」, 建設技術審査証明報告書, 2022.
- 6) 土木学会:2022 年制定 コンクリート標準示方書[設計 編], p291-294, 2023.
- 7) 運上茂樹,星隈順一,西田秀明:橋の耐震性能の評価に 活用する実験に関するガイドライン(案),土木研究所資 料 4023 号,2006.