構造設計への反映を想定した

鋼繊維補強コンクリートの靭性能の評価方法の提案

渡邉 悟士*1・今井 和正*1・高橋 智也*1・黒岩 秀介*1

Keywords: steel fiber reinforced concrete, tensile ductility, steel fiber content, compressive strength, actual production, quality variation 鋼繊維補強コンクリート,引張靭性,鋼繊維量,圧縮強度,実製造,品質変動

1. はじめに

コンクリートへの鋼繊維の混入により, 靱性能の向 上が期待できる。そのため, 過去にも鋼繊維補強コン クリート(以下, SFRC)に関する多くの研究がなされ ており, 40 年ほど前にはそれらの知見をまとめた土木 学会の「鋼繊維補強コンクリート設計施工指針(案)」 ^{1)や日本建築学会の「スチールファイバーコンクリート} 技術の現状」²⁾が刊行されている。ただし, 材料コスト や施工性と併せて, 靱性能の試験方法やそれを(構造) 設計に反映させるための法令・設計規準の整備などに 関する課題があり, 建築分野では SFRC の適用が進ん でいなかった²⁾。近年, 高強度コンクリートなどに鋼 繊維を混入し, その性能を設計に反映させるための検 討^{3), 4)}もなされているが, 建築分野では未だ設計法は 確立されていない状況である。

SFRCの靭性能を設計に反映させるためには,まず材 料特性としての靭性能の定量的な評価が必要になる。 材料特性としての靭性能に関する試験方法には,2003 年に制定されたJCI-S-002-2003(切欠きはりを用いた繊 維補強コンクリートの荷重-変位曲線試験方法)⁵など がある。この試験で得られた引張軟化曲線をもとに把 握した靭性能を,シールドトンネルに用いる鉄筋コン クリート製セグメントなどの設計に反映させる技術⁶ も提案されており,著者らも SFRC を用いた短スパン 梁などの構造性能評価への反映を検討している⁷。た だし,設計段階では SFRC の製造工場や詳細な配(調) 合(以下,調合)条件,さらに適用する SFRC 自体の

*1 技術センター 都市基盤技術研究部 構造研究室

試験結果は明確でないことが想定されるため,その段 階で得られる限られた情報に基づく,机上での靭性能 の定量的な評価が求められる。

SFRCの靱性能には、鋼繊維の特性(引張強度,形状 など)および混入量、コンクリートの強度特性および 鋼繊維との付着特性などが影響する²⁾。近年、両端を 複数段のフック形状とし、鋼繊維の引張強度とともに、 コンクリートとの付着特性を向上させることで、比較 的少ない混入量で高い靭性能が得られる鋼繊維(写真-1)も開発され、前述した検討^{3)、4)}などでも活用されて いる。また、コンクリートについても、化学混和剤の 積極的な活用による鋼繊維混入後の施工性の改善など も検討されている^{8)、9)}。このような使用材料および調 合条件の変化により、前述した各因子による靭性能へ の影響の傾向も変わりうるため、あらためて調合条件 が SFRC の靭性能に及ぼす影響について、定量的な評 価が必要と考える。

さらに、実製造における品質変動を想定して、設計

写真-1 両端にフック形状を有する鋼繊維の例 Photo.1 Example of steel fiber with hook geometry at both ends に反映させる靭性能の設定値は安全側(小さめ)に評価する必要がある。そのため,実製造で靭性能にどの 程度の変動が生じうるかを把握しておく必要がある。

そこで、本研究では、鋼繊維の体積混入率(以下, Vsf)が 0.5~1.0%,設計基準強度 30~60 N/mm² 級の SFRC の靭性能の評価を目的とし、以下の検討を行った。 1)主に試験室での実験による、各種調合条件が SFRC

- の靭性能(引張靭性)に及ぼす影響の評価(2章)
- 2) 建築物に適用したプレキャスト部材の実製造におけ る SFRC の靭性能(引張靭性)の変動の評価(3章)

2. 調合条件が引張靭性に及ぼす影響の評価

SFRCの調合条件のうち、引張靭性に及ぼす影響が大きい項目については、所要の引張靭性が得られるように、設計図書で規定するのが望ましい。ただし、それが困難な場合には、その調合条件の影響を考慮して、靭性能の設定値を安全側(小さめ)に評価するなどの対応が必要となる。いずれにしても、まずは引張靭性に及ぼす影響が大きい調合条件の項目を特定し、その影響の度合いを明らかにする必要がある。

そこで、本章では、特に引張靭性に影響を及ぼしう ると想定される項目を変動要因とした実験を行い、そ れらが引張靭性に及ぼす影響を確認した。

2.1 実験計画

事前に, 直径, 長さ, 形状などの異なる複数の鋼繊 維を使用した実験を行い, Vsf が 1.0%でプレキャスト 部材の製造に支障がない程度のワーカビリティーと十 分な引張靱性が得られた, 両端に 1.5 段 ⁴⁾のフック形状 を有する, 直径 0.55 mm, 長さ 35 mm, 公称引張強度 1850 N/mm² の鋼繊維(写真-1)を選定し, 本実験で使 用した。セメントには, 普通ポルトランドセメントを 使用した。表-1 に, 本章における実験の条件を示す。

	表-1	実験の条件	(2章)
Table 1	Expe	rimental condi	tions	(Chapter 2)

変動要因	実験水準
鋼繊維量	Vsf = 0.5, 1.0%の2水準
圧縮強度	$35.6 \sim 80.7 \text{ N/mm}^2 (\text{W/C} = 30 \sim 50\%)$
骨材種類	細骨材4種類(S1~S4) S1・2・4:混合砂(天然砂+砕砂) S3 :天然砂 粗骨材3種類(G1~G3) G1:安山岩+石灰石砕石2005 G2:石灰石砕石2005 G3:硬質砂岩砕石2005 →細・粗骨材の組合せ5水準
粗骨材量	Vg = 250, 300, 315 L/m ³ の3水準
目標空気量	Air = 2.5, 4.5, 6.5%の3水準

Vsf は,著者らが検討している短スパン梁の開発⁷への展開を想定して,0.5%と1.0%の2水準を対象とした。

水セメント比(以下, W/C)は 30~50%の範囲の 4 水準とし,材齢28日における20℃封かん養生供試体の 圧縮強度は35.6~80.7 N/mm²であった。

本検討では、使用する鋼繊維を限定し、コンクリー ト側の特性、つまりコンクリートの強度特性および鋼 繊維との付着特性が, SFRC の引張靭性に及ぼす影響を 確認することを目的とした。一般のコンクリートでは, ブリーディングにより水平鉄筋や粗骨材の下側に水膜 や空隙が形成されることで、それらとの付着力が低下 する¹⁰⁾。本研究では、化学混和剤を積極的に活用する ことで単位水量を 175~185 kg/m³ としたため, 調合間 の単位水量の差は小さい 12)が、骨材種類や細・粗骨材 の構成比率などによってもブリーディング、さらには 鋼繊維との付着特性に差が生じることも想定される。 また、コンクリート中の空気は、コンクリートの強度 特性に影響を及ぼすとともに、鋼繊維の下側に留まれ ばブリーディングと同様に, 鋼繊維との付着特性に影 響を及ぼすことも想定される。以上を考慮して、本実 験では、Vsf および圧縮強度に加えて、骨材種類、単位 粗骨材絶対容積(以下, Vg) および空気量などを変動 要因として採用し、計27調合のSFRCを対象とした。

スランプは、供試体の密実な充填が可能で、十分な 材料分離抵抗性が得られ、かつ打込み時に過剰に流動 して極端な鋼繊維の配向が生じないように、18 cm を目 標とすることを基本とした。ただし、W/C が 35%以下、 かつ Vg を 250 L/m³(細骨材率で 60%程度)として材 料分離抵抗性を確保する場合には、21 cm を目標とした。

各調合について、□150×530 mm の角柱供試体を 3 個または 4 個ずつ作製し、前述した圧縮強度試験用供 試体と同様に材齢 28 日まで 20℃封かん養生した後に、 JCI-S-002-2003 に準拠して、切欠きはり 3 点曲げ載荷試 験(写真-2)を実施した。なお、角柱供試体は、JCI-S-002-2003 の引用規準である JCI-SF2「繊維補強コンクリ

写真-2 切欠きはり3点曲げ載荷試験 Photo.2 Notched beam three-point bending load test

図-1 鋼繊維量が引張軟化曲線に及ぼす影響 Fig.1 Effect of steel fiber content on tensile softening curve

図-2 本実験で得られた引張軟化曲線の例 Fig.2 Example of tensile softening curve obtained in this experiment

ートの強度及びタフネス試験用供試体の作り方」の 4.3.1(木づちを用いる場合)に準じて作製した。充填 性確保のため,必要に応じて突き棒による締固めを併 用したが,鋼繊維の配向への影響をできる限り避ける ため,突き棒の使用は,試験時にひび割れが生じる長 手方向中央近傍以外に限定した。試験で得られた荷重 -ひび割れ開口変位関係を用い,JCI-S-001-2003の附属 書(コンクリートの引張軟化曲線の推定方法)¹¹⁾によ り引張軟化曲線を求めた。参考として,図-1 に,鋼繊 維の混入が引張軟化曲線に及ぼす影響の例を示す。

なお,その他の実験の詳細については,参考文献¹²⁾を参照いただきたい。

2.2 実験結果および考察

図-2 に、本実験で得られた引張軟化曲線の例を示す。 引張応力は、ひび割れ発生後に急激に低下して極小 (ひび割れ幅 0.02~0.10 mm の範囲)、再上昇して極大 (ひび割れ幅 0.3~1.3 mm の範囲)となった後に、緩や かに下降している。まず、各供試体で得られた引張軟 化曲線(細実線)をもとに、ひび割れ幅ごとの引張応 力の平均値を算出し, 各調合における曲線(太実線) を求めた。さらに、ひび割れ幅0mmから0.5mmごと の点と,前述のひび割れ発生後の極小および極大とな る点(◇)を繋いで単純化した曲線(破線)で、各調 合における引張靭性を評価した。一般に,引張靱性は, 変位ごとの荷重の履歴を考慮した破壊エネルギーで評 価され、著者らも荷重-ひび割れ開口変位関係から求 めた引張軟化曲線における特定のひび割れ幅(例えば1 mm) までの引張応力の履歴を, 平均値という形で設計 に反映することを想定している。引張靭性の指標とす るひび割れ幅1mmまでの引張応力の平均値は、ひび割 れ発生後の引張応力の極大値(以下,引張応力極大値) との間に図-3 のような高い相関が見られ、各種調合条 件による影響は、両指標で同様な傾向となることを確 認している¹²⁾。そこで、本報では、代表して、引張応 力極大値についての検討結果を示す。

2.2.1 鋼繊維量および圧縮強度による影響

コンクリートの強度特性は、SFRCの靭性能に影響を 及ぼすとされている²⁾。また、コンクリート構造物の

図-3 引張靭性に関する2つの指標の関係

設計では、コンクリートの特性は圧縮強度(設計基準 強度)をもとに評価されることが多い。そこで、まず は引張靱性の指標とした引張応力極大値を、圧縮強度 をもとに評価することを検討した。

図-4 に, 圧縮強度と引張応力極大値の関係を示す。 図中に, Vsf が 0.5・1.0%の場合について, 全データに 対する原点を通る回帰直線を破・実線で示した。

回帰直線の決定係数は比較的大きい値であったこと から,引張応力極大値は,Vsfごとに圧縮強度の一次式 で概ね評価可能と考えられる。

2.2.2 骨材種類による影響

図-5 に、骨材種類ごとの圧縮強度と引張応力極大値の関係を示す。図中には、図-4 と同様に、原点を通る 回帰直線を示した。

いずれの細・粗骨材の組合せにおいても、回帰直線 の傾きは、図-4 の回帰直線の傾きに対して、Vsf が 0.5%では(0.050に対して)±0.002以内、Vsf が 1.0% では(0.063に対して)±0.001以内となっており、骨 材種類が圧縮強度と引張応力極大値の関係に及ぼす影 響は小さかった。

2.2.3 粗骨材量による影響

図-6 に, Vg のみを変えた調合間の引張軟化曲線の比 較を示す。

両調合の引張軟化曲線には明確な差が見られず,粗 骨材量が圧縮強度と引張応力極大値の関係に及ぼす影 響は小さかった。なお、Vsf が 1%程度では、靭性能へ の細・粗骨材の構成比率の影響は比較的小さいとされ ており、本実験の結果はこれと整合しているが、Vsf が より大きい領域では、粗骨材量の増大にともなう靭性 能の低下も報告されている²ことに注意が必要である。

2.2.4 空気量による影響

図-7 に, 練上がり時の目標空気量(2.5・6.5%)のみ を変えた6組の調合間の引張軟化曲線の比較を示す。

全ての組で,空気量が小さい調合(実線)で引張応 力極大値が大きく,両者の差が顕著なものも見られた。

図-6 粗骨材量が引張軟化曲線に及ぼす影響 Fig.6 Effect of coarse aggregate content on tensile softening curve

図-8 に, (練上がり時の目標)空気量 (2.5・4.5・ 6.5%) ごとの圧縮強度と引張応力極大値の関係を示す。 図中には, 図-4 と同様に, 空気量ごとに原点を通る回 帰直線を示した。

いずれの空気量においても、回帰直線の傾きは、図-4 の回帰直線の傾きに対して、Vsf が 0.5%では(0.050 に対して)±0.003 以内、Vsf が 1.0%では(0.063 に対 して)±0.002 以内となっている。つまり、本実験の範 囲では、空気量が圧縮強度と引張応力極大値の関係に 及ぼす影響は比較的小さかった。ただし、いずれのVsf についても、空気量が 6.5%の場合の回帰直線の傾きが 最も小さかったこと、空気量の増大は圧縮強度の低下 という形で結果的に引張応力極大値の低下をもたらす ことなどを考慮すると、空気量は過大な値とならない ようにするのが望ましいと考えられる。

図-8 圧縮強度-引張応力極大値 関係(目標空気量による比較) Fig.8 Compressive strength-maximum tensile stress relationship (comparison by target air content)

2.2.5 平均的な引張応力極大値の評価

以上の結果から,引張靱性の指標とした引張応力極 大値の平均的な値は,圧縮強度をもとに,Vsfごとの図 -4の回帰式で概ね評価可能であり,骨材種類,粗骨材 量および空気量などによる影響は比較的小さかったた め,設計段階では考慮しなくても問題ないと考えられ る。

3. 実製造における引張靭性の変動の評価

2章で、圧縮強度に対する平均的な引張応力極大値の 評価方法を提案した。圧縮強度については、その変動 を見込んで調合強度を設定することで、設計基準強度 以上となるように管理されるため、圧縮強度と引張応 力極大値の変動係数が同等であれば、設計基準強度に 対応した平均的な引張応力極大値で評価できる。一方、 両者の変動係数に差があれば、それも考慮した上で、 設計に反映させる引張応力極大値を設定する必要があ る。

そこで、本章では、実製造における SFRC の引張応 力極大値の品質変動を確認し、それをもとに設計への 反映を想定した引張応力極大値の評価について検討し た。

3.1 実験計画

地上 23 階建ての建築物におけるコア部の1 階壁脚部 および外周部とコア部を繋ぐ短スパン梁のプレキャス ト部材(それぞれ4基および16基)に SFRC を適用し た。本適用では、SFRC の靭性能を設計に反映させてい ないため管理項目ではないが、壁脚部・短スパン梁プ レキャスト部材の製作(2022年10月・2023年3~4月) のために実製造された SFRC の引張靭性の変動を調査 した。

表-2 SFRC の調合条件(実製造) Table 2 Mix proportion of SFRC (actual production)

部材	圧 [Fc	縮強 N/mm Fm	度 ²] F	スランフ [°] [cm]	空気量 [%]	W/C [%]	[kg C	単位 g/m ³ , W	左量 <i>L/I</i> S2	m ³] G2	Vsf [%]
壁脚部	60	66.2	77.7	21±2	$4.5^{+0.5}_{-1.5}$	31	561 <i>178</i>	175 <i>175</i>	930 <i>352</i>	680 <i>250</i>	1.0
短xn°ン 梁	48	56.9	71.0	18±2.5	$4.5^{+0.5}_{-1.5}$	34	515 <i>163</i>	175 <i>175</i>	968 <i>367</i>	680 <i>250</i>	1.0
<材料>C : 普通ボルトラント セメント (密度 3.16 g/cm ³) W : 地下水 S2: 混合砂 (表乾密度 2.64 g/cm ³) G2: 石灰石砕石 2005 (表乾密度 2.72 g/cm ³) 高性能 AE 減水剤 鋼繊維 (2.1節参照)											

(記号) Fc:設計基準強度,Fm:調合管理強度,F:調合強度

表-3 SFRC の品質管理結果(実製造) Table 3 Quality control results of SFRC (actual production)

Fc		スランプ	空気量	圧縮強度※	
$[N/mm^2]$		[cm]	[%]	$[N/mm^2]$	
60	最小~最大	20.5~23.0	3.1~4.3	78.9~86.3	
	平均	22.2	3.8	82.3	
	変動係数[%]	4.2	11.6	4.3	
48	最小~最大	15.5~20.5	3.3~4.9	71.2~80.0	
	平均	18.5	4.2	76.3	
	変動係数[%]	9. 3	12.6	4.9	

※Fm を保証する材齢28日における標準養生供試体の圧縮強度

表-2 に,実製造における SFRC の調合条件を示す。 壁脚部については,設計基準強度 60 N/mm²に,事前実 験¹³⁾で求めた構造体強度補正値を加えて調合管理強度 を 66.2 N/mm²,さらに変動係数 10%に相当する標準偏 差を 1.73 倍した値を加えて調合強度を 77.7 N/mm²に設 定している。Vsf は 1.0%,W/C は 31%,Vg は 250 L/m³, 目標空気量は 4.5%としたが,空気量は過大な値となら ないように,5%以下で管理した。短スパン梁について は,壁脚部と同様に計算した調合強度は 66.8 N/mm² で

大成建設技術センター報 第56号(2023)

図-9 引張応力極大値の品質変動(実製造,左:Fc60 N/mm²,右:Fc48 N/mm²) Fig.9 Quality variation of maximum tensile stress (actual production, left: Fc60 N/mm², right: Fc48 N/mm²)

あるが,翌日脱型を可能とするために,実際には 71.0 N/mm²と大きく設定し,W/Cは 34%とした。

壁脚部・短スパン梁プレキャスト部材は、それぞれ4 日に分けて製作し、各8バッチから□150×530mmの 角柱供試体を3個ずつ採取した。設計基準強度60 N/mm²は材齢28日、設計基準強度48N/mm²は材齢49 日(いずれも構造体コンクリート強度の保証材齢56日 以内)まで封かん養生して、設計基準強度ごとに8回 の切欠きはり3点曲げ載荷試験を実施した。試験で得 られた荷重-ひび割れ開口変位関係から求めた引張軟 化曲線における引張応力極大値の品質変動を確認した。

3.2 実験結果および考察

3.2.1 実製造における品質管理結果

表-3に、実製造時のSFRCの品質管理結果を示す。

スランプ,空気量および強度管理対象となる材齢 28 日における標準養生供試体の圧縮強度は、いずれも表-2の規定範囲(圧縮強度は Fm 以上)を満足するもので あった。鋼繊維を混入しない普通調合における工場の 圧縮強度の変動係数の実績は 5%程度であり、SFRC で も概ね同様な結果が得られた。

3.2.2 実製造における引張応力極大値の品質変動

図-9 に,設計基準強度 60 N/mm²および 48 N/mm²の 実製造時の SFRC の引張応力極大値の品質変動を示す。 引張応力極大値の変動係数は,前述した圧縮強度の変 動係数よりも大きかった。したがって,設計に反映さ せる引張応力極大値は,設計基準強度に対応した平均 的な値ではなく,両者の変動係数の差も考慮した上で 設定する必要があると考えられる。

3.2.3 設計に反映させる引張応力極大値の評価

図-10 に,設計に反映させる引張応力極大値を評価す るための,圧縮強度および引張応力極大値の変動に関 する概念図を示す。具体的にイメージしやすいように,

Fig.10 Compressive strength and maximum tensile stress variation

図中には設計基準強度 60 N/mm²の実製造データに対応 した数値を示している。なお,圧縮強度の変動係数は 調合設計で採用した(調合管理強度の)10%とし,引 張応力極大値の変動係数は,圧縮強度の場合と同様に, 図-9 の実測結果の変動係数に対して十分な余裕を見込 んだ 20%とした。また,正規偏差は,調合設計で採用 した1.73(不良率4%程度相当)とした。

ここで、構造体コンクリート強度の標準偏差を標準 養生供試体の圧縮強度の標準偏差((60+6.2)×10%) N/mm²と同等とすると、構造体コンクリート強度の平 均値は、青で示す正規分布の最頻値である 71.5(=60+ 1.73×(60+6.2)×10%) N/mm²となる。引張応力極大値 の平均値は、それに対応して図-4の回帰式から 4.50 (=0.063×71.5) N/mm²と評価できる。なお、この値は 図-9 左図の実測結果の平均値と概ね対応していた。設 計に反映させる引張応力極大値は、実製造における品 質変動に応じてこの値を低減し、安全側(小さめ)に 評価したものとする必要がある。具体的には、圧縮強 度と同程度以下の不良率に収めるためには, 3.34 (=4.50/(1+1.73×20%)) N/mm²とする必要がある。

ただし、このような計算の過程で必要な情報のうち、 構造体強度補正値(前述の構造体コンクリート強度の 標準偏差の計算における 6.2 N/mm²)は、SFRCの製造 工場や詳細な調合条件、さらに製造時期の温度環境な どが特定されていない設計段階では、何らかの仮定の もとで設定して、引張応力極大値を評価する必要があ る。ここで、構造体強度補正値を 0 N/mm²、つまり構 造体コンクリート強度と標準養生供試体の圧縮強度を 同等と単純化して、前述と同様に計算すると、設計に 反映させる引張応力極大値は、設計基準強度の 0.055

(=(1+1.73×10%)×0.063/(1+1.73×20%))倍で,3.30 N/mm²となり,構造体強度補正値に実際の値を採用し た前述の計算結果に対する誤差は小さかった。このよ うにして計算した,設計に反映させる引張応力極大値 は,図-9左図の最小値3.9N/mm²に対して,十分に安全 側(小さめ)になっている。また,図-4のVsfが1.0% の引張応力極大値はいずれも圧縮強度の0.058倍以上と なっており,実製造では構造体コンクリート強度が設 計基準強度よりも十分に大きくなるように調合設計さ れることも考慮すると,設計に反映させる引張応力極 大値を,設計基準強度の0.055倍とすることで,材料特 性値としては十分な安全率が見込めると考えられる。

4. おわりに

鋼繊維補強コンクリート(以下, SFRC)の普及に向 けて,その優れた靭性能を設計に反映させるための設 計法の確立が求められる。そのために,まず設計に反 映させることを想定した,材料特性としての引張靭性 の定量的な評価が必要となる。

本報では、主に試験室での実験をもとに、配(調) 合条件が引張靭性に及ぼす影響について検討(2章)し、 さらに建築物に適用するプレキャスト部材の製作のた めに実製造された SFRC の引張靭性の品質変動を確認 して、設計に反映させる引張靭性の評価について検討 (3章)した。なお、引張靱性の指標には、JCI-S-002-

2003 に準拠して行った切欠きはり3 点曲げ載荷試験による荷重-ひび割れ開口変位関係から求めた,引張軟

化曲線におけるひび割れ発生後の引張応力の極大値 (以下,引張応力極大値)を対象とした。

鋼繊維の体積混入率(以下, Vsf)が 1.0%の場合に ついて,設計基準強度に基づく,実製造における品質 変動の影響も踏まえた上での引張応力極大値の定量的 な評価方法を提案した。ただし,現状では実製造にお ける品質変動のデータは限られており,今後も Vsf お よび圧縮強度などの異なる調合についてもデータを蓄 積し,提案する評価方法の信頼性向上に努めたい。

参考文献

- 1) 土木学会:鋼繊維補強コンクリート設計施工指針(案), 1983.
- 2) 日本建築学会:スチールファイバーコンクリート技術の 現状, 1984.
- 掛悟史,小林楓子,田邊裕介,高津比呂人:高強度 SFRC 柱のせん断性能に関する研究,コンクリート工学年次論 文集, Vol.44, No.2, pp.325-330, 2022.
- 中川晴日,原田岳信,高橋七海,石川裕次:高強度 SFRC 柱のせん断強度に関する実験的研究,コンクリート工学 年次論文集, Vol.44, No.2, pp.643-648, 2022.
- 5) 日本コンクリート工学会:切欠きはりを用いた繊維補強 コンクリートの荷重-変位曲線試験方法(JCI-S-002-2003), JCI 規準, 2003.
- 6) 土木学会:土木学会「技術評価制度」の適用第6号「繊維 補強鉄筋コンクリート製セグメントの設計・政策技術」, 土木学会誌,第95巻,第7号,pp.72-73,2010.
- 7) 高橋智也,渡邉悟士,今井和正,渡辺英義:鋼繊維補強 コンクリートを用いた短スパン梁の開発,コンクリート 工学, Vol.60, No.8, pp.661-668, 2022.8.
- 8) 佐々木亘:種々の短繊維を用いた高強度繊維補強コンク リートの材料特性と配合設計に関する研究,京都大学, 2014.
- 渡邉悟士,今井和正,黒岩秀介:鋼繊維補強コンクリートの調合条件がワーカビリティーに及ぼす影響に関する研究,日本建築学会構造系論文集,Vol.87,No.796, pp.514-523,2022.6.
- 10) 日本コンクリート工学会:コンクリート技術の要点 '19, pp.61-62, 2019.
- 日本コンクリート工学会:切欠きはりを用いたコンクリートの破壊エネルギー試験方法 (JCI-S-001-2003), JCI 規準, pp.6-13, 2003.
- 渡邉悟士,今井和正,高橋智也,黒岩秀介:鋼繊維補強 コンクリートにおける引張靭性の評価に関する実験的研 究,日本建築学会構造系論文集,Vol.88, No.808, pp.880-887, 2023.6.
- 13) 渡邉悟士,高橋智也,今井和正,黒岩秀介:粗骨材量を 低減した鋼繊維補強コンクリートの性能に関する検討, コンクリート工学年次論文集, Vol.44, pp.892-897, 2022.