環境DNAを活用した海域調査における 流れの影響について

赤塚 真依子*1・高山 百合子*2・織田 幸伸*2・高畑 陽*1・源 利文*3

Keywords: environmental DNA, seagrass, particle tracking, biological survey, environmental preservation 環境 DNA,海草,粒子追跡計算,生物調查,環境保全

1. はじめに

環境 DNA 分析は,環境中の生物組織片(排泄物,植 物片等)由来の DNA を分析する手法であり,新しい生 物情報の入手方法として,魚類の網羅的解析を中心に 実施事例が増えている¹⁾。著者らは,これまでに魚道 における回遊魚の遡上確認²⁾や造成工事における希少 両生類の保全地における生息状況の把握³⁾など,建設 工事期間中における生物モニタリングに環境 DNA の活 用を検討し,建設工事で保全対象となる生物の生息状 況を把握する手法としての有用性を報告してきた。

環境 DNA を活用した生物調査では、そこに生息する 水域生物の環境 DNA を精度良く採取できる採水地点を 適切に選定する必要があり、水域における流れと環境 DNA の関係を整理することが重要である。海域におけ る環境 DNA の空間分布調査は、河川⁴⁾に比べて少なく、 調査頻度も限られた検討が多い^{1,5-7)}。その要因の一つ として、海域では流れの変化が大きく、採水地点にお ける環境 DNA が常に変化していることが挙げられる。 環境 DNA に関する研究事例が多い魚類は水域を移動す ることから、固着生物の環境 DNA を対象とすることが、 海域における環境 DNA モニタリングへの流れの影響特 性把握に有効と考えられる⁸。

近年,ブルーカーボン創出で注目されている藻場で は、ブルーカーボンをクレジット化をする際に創出効 果の提示が求められている。そのため、定期的に藻場 の存在状況をデータとして取得することが必要となる ⁹。衛星写真等の活用により、藻場の生息範囲推定が検 討されているが,海草,海藻の種類や多様性の把握は 従来のダイバーによる目視観察に頼るところが大きい。 海中において藻場の状況を適切に評価できる環境 DNA の採取地点を把握することができれば,従来手法より 容易に藻場の生育状況を評価できる可能性がある。

本研究では,群集で存在するアマモを対象とし,環 境 DNA を採取する地点の流れの影響を把握することを 目的に,アマモの藻場周辺海域における流動解析およ び粒子追跡計算から,流れの影響によるアマモの環境 DNA の分布について評価を試みた。

2. 現地調査

2.1 藻場調査

三重県松阪市松名瀬海岸沖のアマモが生育している 藻場を調査地とした。櫛田川河口から笹笛川河口の藻 場を対象とした藻場調査と環境 DNA 分析のための採水 を 2021 年 8 月と 2022 年 1 月に実施した(表-1)。

調査では、ソナー探査で藻場範囲を確認し、その範 囲の東西端部と間に 5 本の調査測線を岸沖方向に設け た。調査測線上で、アマモが生育する境目を起点とし て岸沖方向に約 100 m 間隔の各調査地点において、コ ドラート法 (50 cm 四方)により株数、草丈、被度を計 測した。また、測線間およびこの藻場に隣接するアマ モ場の確認として、ソナーによる探査を行った。2021 年 8 月の藻場調査結果を図-1 に示す。図-1 は、藻場調 査により確認した藻場の生育範囲を包括するように色 付けをした。図-1 に示すように、1990 年代の藻場範囲

^{*1} 技術センター 都市基盤技術研究部 環境研究室

^{*2} 技術センター 社会基盤技術研究部 水理研究室

^{*3} 神戸大学

¹⁰と 2021 年 8 月に被度が高い範囲では大きな変化が見 られなかった。2021 年 8 月調査では,海岸線に沿った 水深 5~6 m より浅い範囲においてアマモの生育を確認 し,2022 年 1 月の調査では,発芽体が多く確認された が,季節による生育分布域に大きな差はなかった(写 真-1)。

2.2 環境 DNA 調査

環境 DNA 分析試料として海水を採水した地点と時刻 を表-1,図-1に示す。採水地点は、藻場直上と、直下 に藻場が無い地点を含むように、藻場の中央 C1~C4, 西端 W1~W4,東端 E1~E4 の 12 地点を設定した。藻場 中央は、C4、C3 が藻場直上、C2 は藻場の沖側境界、 C1 は藻場境界から 300 m 沖の地点である。西端と東端 は、W4 と E4 が藻場直上であり、それ以外は藻場外と した。8 月は藻場中央 C1~C3 の 3 地点、1 月 26 日は西 端 W1~W4,中央 C1、C3 の 6 地点、1 月 27 日は 12 地 点において、8 月は干潮に近い下げ潮時、1 月は下げ潮 時と上げ潮時に採水した。

そこで,8月はC1,C2(海底上3m,水面下約7m, 3m),1月はC1において2日間の流速を電磁流向流速 計(INFINITY-EM,JFEアドバンテック(株)製)を 用いて測定した。約20Lの海水を水面下1mの位置か らポンプを用いて汲み上げた。採水試料は,直射日光 を避けて運搬し,採水当日にガラス繊維ろ紙(φ90mm) でろ過し,ろ紙を冷凍保管した。

環境 DNA 分析は,環境 DNA 学会標準マニュアル に準拠し,ろ紙から DNA を抽出し,定量 PCR 法でア マモの matK 領域を対象とし環境 DNA 量を定量した ^{11,12)}。DNA 抽出液は, PCR での DNA 増幅阻害の対 策として,磁性ビーズ Agencourt AM Pure XP (BECKMAN COULTER)で精製した。

3. 流動解析と粒子追跡計算

アマモの環境DNA量に対する流れの影響を検討する ため、伊勢湾全域を対象とした流動解析により松名瀬 海岸沖の流れ場を再現し、この流れ場に基づいて環境 DNAを粒子に見立てた粒子追跡計算を実施した。流動 解析モデルは、静水圧近似とブシネスク近似を仮定し たナビエ・ストークスの運動方程式と質量保存則の連 続式を基礎式とする3次元流動解析モデル¹³⁾を用いた。 鉛直方向はσ座標系であり、水平拡散項はσ平面に沿 った方向で定義される。流動解析の計算領域と松名瀬 海岸沖の海底地形を図-2に示す。主な計算条件は表-2 である。計算格子は、外洋側から岸に向けて細かくし、

表-1 現地調査概要								
Table 1 Overview of field survey								
	8月調査	1月調査						
藻場調査	潜水目視(草丈・株数・被度)およびソナー探査							
採水日時	2021年8月4日 8:00~8:30 (干潮9:13)	2022年1月26日 13:30~14:00 (満潮11:18)	2022年1月27日 7:50~8:50 (干潮6:23)					
採水地点	3地点 中央	6地点 西端・中央	12地点 西端・中央・東端					

(a) 2021 年 8 月

(b) 2022年1月

写真-1 アマモの生育状況 Photo.1 Zostera marina

松名瀬海岸沖で45 mとした。境界条件は、湾口部に鳥 羽観測所における実測潮位を与えた(図-2赤線)。粒子 追跡計算では、アマモの環境DNAを藻場から時々刻々 と放出される極微細な草体片と想定し、流れに完全受 動な粒子として追跡した8)。粒子の初期位置は、図-3に 示したアマモの生育範囲の全面とし, 鉛直層の最下層 (5層目)に均等配置した。粒子は、45m格子に対し81

個の粒子を10分間隔で投入した。

現地調査および環境 DNA 分析結果 4.

4.1 採水時の流況

現地において計測した流速および調査日の伊勢湾に おける毎時の潮流推算情報(潮流メッシュ推算データ, 伊勢湾全域、日本水路協会)を参考として用い、松名 瀬エリアにおける採水時刻の流況を整理した。図-3に, 現地における計測流速値と推算潮位を示す。ここで流 向は、北向きを 0° とした時計回りの角度であり、推 算潮位は、気象庁の鳥羽観測所の値である。図-3 には アメダスによる風向・風速(津気象台)を併記した。

8月の採水時刻は干潮の約1時間前の下げ潮時であり、 現地の風は弱く海況は穏やかであった。伊勢湾の潮流 推算図によると、松名瀬海岸沖では、湾央から湾口に 向かう下げ潮の流れと対になる形で時計回りの流れが 形成されており、松名瀬海岸沖の岸近くには西に向か う流れ、沖側では北に向かう流れが見られる。図-3(a) に示す流速計測値は、C1、C2ともに、流速は数 cm/sと 非常に弱く、概ね北西〜北向きの流れであった。

1月26日の採水時刻は、下げ潮時(満潮の2時間後) であり、伊勢湾の潮流推算図では、沖から松名瀬沿岸 に向かう流れが示されている。流速計測値は、C1 で 10 cm/s 程度の東~東南東向きの流れであった。1月27日 は上げ潮時(干潮の1時間後)であるが、潮流推算図 では、湾央から湾口に向かう下げ潮流が残っており、 松名瀬海岸沖では湾口側に向かう南東流が、その東側 では北西流と合流するような複雑な流況が示されてい た。流速計測値は、C1で数 cm/s と前日に比べて弱く、 流向は1月26日とほぼ同じであるが、やや南寄りであ った。1月26日および27日の採水時刻における現地の 風は弱く、比較的穏やかであった(図-3(b))。

以上より, 計測した流速と伊勢湾の潮流推算情報か ら、湾央から湾口に向かい南下する大きな流れがある タイミングに、松名瀬海岸沖ではこの流れを補償する ように時計回りの還流が形成され、下げ潮時において も湾奥(西側)へ向かう流れが発生する場合があるこ

図-2 計算格子, 海底地形と粒子の初期位置 Fig.2 Computational grid, water depth and initial position

of particle

衣-2 土な計昇采件							
Table 2Calculation conditions							
	2021年8月調査	2022年1月調査					
計算領域	伊勢湾全域						
平面座標系	座標系 直交直線座標系						
	格子幅 1215m, 405m, 13	35m, 45m					
鉛直座標系	分割数 5層(σ座標系)						
タイムステップ	0.5秒						
水深	内閣府南海トラフの巨大地震モデル検討会地形データより作成						

計算期間	2021/7/1~2021/8/7	2022/1/1~2022/2/1	
境界条件 潮汐	気象庁潮位実測値(鳥羽)		
水温・塩分	伊勢湾環境データベース		

水深

粒子数×投入間隔 161,514個 (81個均等配置/45m格子) ×10分間隔

とを確認し、採水時刻の流況特性を概ね把握した。

4.2 環境 DNA 分析結果

分析条件の検討結果を表-3 に示す。ろ紙1 枚当たり の DNA 量を求め、ろ過した海水1L当たりの量に換算 した copies/L として比較した。1Lをろ過した条件1、2 ではアマモの環境 DNA が検出されず、5L、15Lをろ 過した条件3~5 でアマモの環境 DNA の増幅を確認で きた。また、抽出した DNA の精製なしとした条件3 お よび精製したろ過量15Lの条件5 では分析阻害を確認 した。このことは、ろ過量を増量したことにより海水 に含まれる分析を阻害する腐植物質なども環境 DNA と 一緒に多くろ紙に回収したためと考えられる。分析阻 害がないことを確認できた条件4を採用した。

藻場中央,西端,東端における環境 DNA の分析結果 を図-4 に示す。8 月調査では,藻場中央において,ア マモが生育する藻場直上(C3),藻場の沖側境界(C2), 藻場沖(C1)の3 地点から採水しており,環境 DNA 量は,C3,C2,C1の順序で低くなり,岸側が最も高く なった(図-4(a))。1 月の調査(図-4(b))では,藻場中 央で1月27日は岸側のC4 が高くなったが、1 月26 日 では沖側のC1 が高かった。藻場西端の4 地点では、1 月26 日と27 日の両日で藻場直上および岸寄りのW3, W4 における環境 DNA 量がW1,W2 に比べて高くなっ た。藻場東端は、E2 が高い結果となったが、E1~E4 に おける環境 DNA 量は他地点に比べると低く、E1~E4

条件	海水 ろ過量	精製	環境DNA <u>量</u> [copies/L]	分析 阻害
1	1L	なし	検出なし	なし
2	1L	あり	検出なし	なし
3	5L	なし	28	あり
4	5L	あり	200	なし
5	15L	あり	10	なし

表-3 分析条件の検討結果 Table 3 Results of analysis of analysis

Fig.4 Result of eDNA analysis

の 4 地点間の差異は小さかった。この結果から、アマ モの環境 DNA 量は、藻場から数 100 m 程度離れた位置 でも定量下限を超える値が得られることが分かった。

5. 環境 DNA に対する流れの影響について

5.1 流動解析結果

図-5,図-6 に,流動解析結果として採水時刻におけ る流速ベクトルを示す。図-5 の 8 月の採水時刻は下げ 潮時であるが、4 章1節において確認した流況と同様に、 松名瀬海岸沖において岸沿いに湾奥に向かう流れが形 成されている。これは、湾央を南下する流れと対にな るように形成された流れである。図-6 の 1 月 26 日は 下げ潮時であり、全体に湾口側に向かう南下する流れ が形成され、松名瀬海岸沖の流向は東〜東南東向きで ある。この結果は、現地計測結果と整合している。一 方、1 月 27 日は上げ潮時で、松名瀬海岸沖においては 流速は小さいものの、沖側から岸に向かう南向の流れ が形成されており、4 章1節において確認した現地流況 との差異が見られた。東端では西向きの比較的大きな 流れが生じており、非常に複雑な流況になっていると 考えられるため、解析の再現精度には課題がある。

5.2 粒子追跡計算結果と環境 DNA 分析結果の比較

環境 DNA の分析結果について,確認した流況パター ン,および,粒子追跡計算結果と比較することにより, 環境 DNA の分布に対する流れの影響を検討する。環 境 DNA 分析結果と粒子追跡計算結果を図-7,図-8 に示 す。計算結果は,採水と同時刻(1分間隔)に,採水地 点(2 m×2 m×全水深)に存在していた粒子数である。 8 月の計算結果(図-7,青)を見ると,粒子数は,藻場 直上のC3 が最も多くなった。図-5 より,藻場付近では, 湾奥側の北西に向かう流れがあることから藻場から出 発した粒子はC2,C1の沖側へと徐々に運ばれるものの, C3 付近の流速が小さいために藻場に近いC3 の粒子が

図-5 流動解析結果 (2021 年 8 月 4 日) Fig.5 Fow velocity vectoy (August 2021)

最も多くなったと考えられる。

図-8(a)の1月26日の粒子数を見ると、東西に比べ て中央でやや多く、また東端と西端の粒子数を比較す ると、東端がやや多い結果となった。図-6より、西端 の粒子は東向きの流れにより少なくなり、また東端の 粒子は、中央よりも東端の方が東向き流速が大きい傾 向にあるため、中央よりも少なくなったと考えられる。 1月27日は、C3の粒子数が卓越している。この時の 流れが非常に小さいため、藻場中央に位置するC3では 粒子が移流せずに蓄積され、一方周囲の粒子は流速は 小さいものの外側に移流していると推察される。

次に,環境 DNA 量の平面分布について,現地の流況 特性および計算結果を踏まえて考察する。

8 月の流況は、北西に向かう沿岸沿いの弱い流れで あることから、図-6(黄)の藻場中央の3地点における 環境 DNA 量は、その供給源である藻場との距離に応じ た差異になったと考えられる。計算結果の粒子数と整 合した結果となった。

一方,図-8(b)の1月の環境DNA量については,計算 結果の粒子数と整合した結果となっていない。1月26日は,計算結果と同様に藻場中央で環境DNA量が高く なっているものの,西端でも非常に高い環境DNA量が 検出されている。図-6を見ると,計算では西端近傍で は沖向き(北東向)の流れが生じていることが要因と 考えられる。また,1月27日は,計算では,対象エリ アの流況が非常に複雑になっているため、局所的な滞 留域が生じている可能性が考えられる。ただし、図-3 の流速計測の結果では、流速は小さいことから、岸側 で高い DNA 量となり、全体としては比較的均等な環境 DNA 量になったと考えられる。

分析結果からは、アマモの環境 DNA 量は、藻場から 数 100 m 程度離れた位置においても定量下限を超えた 値が得られ、環境 DNA の移流によって藻場内の地点と 同等の高い値が得られる場合があることが分かった。 松名瀬海岸沖における環境 DNA 量の相対的な平面分布 において、沿岸方向の流れによって運ばれる環境 DNA 量は、流れが弱いために藻場との距離が近いほど高く なる分布傾向を形成するが、局所的な滞留域などの複 雑な流況の影響を受けて高い環境 DNA 量となる地点が あることが示唆された。流動解析を環境 DNA による藻 場モニタリングに活用するためには、流況再現性の向 上とアマモの生育密度条件等を反映した解析が必要で あり、岸近傍の浅海域の流況の再現精度が課題となる。

6. おわりに

本論では、藻場を対象とした環境DNA分析と採水時 の流況確認および粒子追跡計算に基づき、環境DNA量 の相対的な差異について検討した。環境DNAを活用し た藻場のモニタリングを実施する際には、流速の小さ い条件で採水することが有効と考えられるが、数値解 析結果に基づいて流況を把握することで、環境DNAを 多く採取したい、季節変動等の長期的な変化を見るた めに短時間の変動が少ない位置で採取したいなど、目 的に合わせた採水地点を選定できると考えられる。

今後は、定点におけるアマモのDNA量の経時変化と 流れの関係の把握や季節変動を含めた長期的なアマモ のDNA量を評価するための調査地点の選定、試料の採 取手法等を検討し、藻場の生育状況や多様性の評価へ の環境DNAの活用を目指していきます。

参考文献

- 源利文,山本哲史,笠井亮秀,近藤倫生:環境 DNA を用 いた沿岸域における魚類モニタリング,沿岸海洋研究, vol.53, No.2, pp.173-178, 2016.
- 赤塚真依子,高山百合子,伊藤一教:河川における環境 DNA を活用した魚類遡上のモニタリングに関する検討, 土木学会関東支部第 47 回技術研究発表会,II,42, pp.1-2,2020.
- 3) 内池智広,赤塚真依子,渡邉千佳子,高山百合子:ため 池群における環境 DNA を用いた希少両生類の生息状況調 査,土木学会全国大会第 77 回年次学術講演会, Ⅶ, 18, pp.1-2, 2022.
- Jo, T. and Yamanaka, H.: Meta-analysses of environmental DNA down stream transport and deposition in relation to hydrogeography in riverine environments, *Freshwater Biology*, pp.1-11, 2022.
- 5) Fukaya, K., Murakami, H., Yoon, S., Minami, K., Osada Y., Yamamoto, S., Masuda, R. Kasai, A., Miyashita, K., Minamoto,

T. and Kondoh, M.: Estimating fish population abundance by integrating quantitative data on environmental DNA and hydrodynamic modeling, *Molecular Ecology*, vol.30, No.13, pp.3057-3067, 2021.

- 平田真二,白尾豪宏,飯田岳,赤松良久,乾隆帝,中村 圭吾,村岡敬子:汽水域及び河川下流域における環境 DNAの空間分布把握とサンプリング法の検討,河川技術 論文集,vol.25, pp.417-422, 2019.
- 2) 上村了美,上月康則,大谷壮介,平川倫, 岩見和樹, 竹山佳奈,山中亮一:環境DNAメタバーコーディング にいよる運河・港湾に生息する魚類の種多様性検出に関 する研究,土木学会論文集 B3 (海洋開発),vol.74, No.2, pp. I_474-479, 2018.
- 8) 赤塚真依子,高山百合子,ムチェブエ エドウィン,織 田幸伸,源利文:環境 DNA を活用した藻場モニタリング における流れの影響について,土木学会論文集 B2(海岸 工学),vol.78, No.2(投稿中).
- Kuwae, T., and S. Crooks : Linking climate change mitigation and adaptation through coastal green-gray infrastructure: a perspective, *Coastal Engineering Journal*, vol.63, No.3, pp.188-199, 2021.
- 10) 環境庁自然保護局:自然環境保全基礎調査第五回調查, 2001.
- 11) Minamoto, T., Miya, M., Sado, T., Seino, S., Doi, H., Kondoh, M., Nakamura, K., Takahara, T., Yamamoto, S., Yamanaka, H., Araki, H., Iwasaki, W., Kasai, A., Masuda, R. and Uchii, K. : An illustrated manual for environmental DNA research: water sampling guidelines and experimental protocols, Environmental DNA, vol.3, pp.8-13, 2021.
- 12)赤塚真依子,高山百合子,ムチェブエ エドウィン,伊藤一教,源利文:藻場モニタリングのための環境 DNA分析プロトコル作成に向けた検討,土木学会論文集 B2(海岸工学),vol.77, No.2, pp. I_895-I_900, 2021.
- 13) Deltares: Delft3D-FLOW User Manual, 2018.