工場等の開放空間に適用可能な 「T-トルネード排気ユニット[®]」の開発

秋山 和也*1・八田 良行*2

Keywords: local exhaust, swirl flow, tornado, open spaces, oil mist, capture efficiency 局所排気, 旋回流, トルネード, 開放空間, オイルミスト, 捕集率

1. はじめに

オイルミスト等が発生する生産機器を有する工場で は、室内の空気環境の悪化による作業者の健康リスク や火災のリスクを低減させるため、汚染物質の室内へ の拡散を抑える対策が求められている。その対策とし て、生産機器に直接ダクトを接続する方法や、生産機 器の近傍に排気フードを設置し、局所的に排気を行う 方法が用いられているが、一方で作業空間の確保や生 産機器のレイアウト変更に対応するため、排気方法の フレキシブル性も求められている。

そこで、本研究では、開放空間を有する工場等の新 築およびリニューアルにおける環境改善とフレキシブ ル性の両立に向け、トルネード(旋回流)を応用した局 所排気ユニット「T-トルネード排気ユニット」(以下、 本ユニット)を開発した。

本報では本ユニットの開発にあたり,試作機を用い た実験および CFD によるシミュレーションと,その結 果をもとに製作した実機による実大実験を行い,トル ネード排気の有効性を検証した結果を報告する。

2. 一般的な局所排気方法と課題

生産機器を対象とした一般的な局所排気方法として, 先ず,図-1に示すように排気フードを設置し,生産機器の近傍から排気を行う方法が挙げられる。この方法は,生産機器から排気される汚染物質が吸込口付近に 到達して初めて吸込まれるため,捕集率が低くなる点

図-1 局所排気方法の例 (排気フードおよび生産機器に直接接続) Fig.1 Example of local exhaust method (Direct connection to exhaust hood and production equipment)

図-2 ブースを利用した局所排気方法の例 Fig.2 Example of local exhaust method covering production equipment

が課題となる。また,生産機器本体にダクトを直接接 続する場合は,レイアウト変更のたびに立下げダクト の新設が必要になり,フレキシブル性に欠ける。次に, 図-2の生産機器をブースで囲う方法では,汚染物質が 外部に漏れることなく排気されるが,作業空間はブー ス内に制限されてしまう点が課題となる。

なお,トルネードを利用した既往の研究や技術として,喫煙室内を対象とした研究 ¹⁾や病院の病床を対象

^{*1} 技術センター 都市基盤技術研究部 空間研究室

^{*2} 設計本部 設備設計第三部

とした排気技術²⁾があるが,周囲の壁やカーテンが気 流のガイドとなることでトルネードが発生しており, 本研究で対象とするような,周囲に壁がない開放され た空間への適用は難しい。

そこで、本研究では、これらの課題を解決すべく開 発した本ユニットについて、開放空間におけるトルネ ードの発生の有無や、汚染物質の捕集率を求めること で、その有効性を検証する。

3. 給排気一体型制気口の概要

図-3 に本ユニットの本体である給排気一体型制気口 (600 ¢)の内部構造を示す。給気は,側面から取り入れ, 内部で旋回させながら室内へ吹出す。吹出口は,下面 に円周上に配置し,さらに吹出ガイドを設置する。吸 込口は,下面の中央に配置し,トルネードにより周囲 に拡散せずに上昇してきた空気を捕集する。なお,給 気ファンと排気ファンは別置で設置する。

図-3 給排気一体型制気口の内部構造 Fig.3 Internal structure of supply / exhaust integrated air diffuser

試作機実験による評価

4.1 実験概要

本ユニットの給気風量(以下, SA)と排気風量(以下, EA)を検討する。実験は、図-4に示すように本ユニット の下部に煙発生器を設置し、床面から煙を発生させ、 トルネードの発生状況を可視化する。評価は、トルネ ードの発生の有無や安定性に基づき、表-1 に示すよう に5段階の基準を設定し、目視で評価する。

実験は,給排気一体型制気口のみ設置した条件で行う。給排気風量として SA と EA は,それぞれ 400~900m³/h の範囲で 50m³/h 刻みに可変させた全 121 ケース実施する。

本ユニットの設置高さは,床面から給排気一体型制

気口の下端まで 2.0m とする。

4.2 目視による評価結果

表-2 に,給排気一体型制気口のみ設置した条件での 目視評価結果を示す。給排気風量として,SA:700~ 750m³/h,EA:450~500m³/h の範囲で「4」と高い目視 評価になる傾向がみられた。また,全体としてEAより SA が大きい場合にトルネードが発生する傾向がみられ た。しかし,給排気一体型制気口のみでは,安定した トルネードの発生となる「5」の評価は得られなかった。

図-4 煙発生器を用いた実験システム Fig.4 Experimental system using smoke generator

表-1 トルネードの目視評価基準

Table 1Visual evaluation criteria for tornado

評価	備考
1	トルネードが発生せず、煙が上昇しない
2	トルネードが発生し、煙は上昇するが給気と混合する
3	トルネードが発生し、緩やかに煙が回転しながら上昇
4	トルネードが発生し、煙が早く回転しながら上昇
5	安定したトルネードが発生し、煙が回転して上昇

(supply / exhaust integrated air diffuser)

5. 改良型試作機の評価

5.1 実験概要

周囲に壁を設けることなくトルネードを安定させる ため、試作機の改良型として、給排気一体型制気口に 図-5 に示すように外周給気フード(□1,500, 1,500φ)や 排気フード(300 φ)を設置した場合について目視評価を 行う。

給排気風量は,代表として表-2 で高い評価が得られた SA:700m³/h, EA:450m³/h とする。

設置高さは、床面からフード下端まで 1.5m または 2.0m とし、実験を行う。

5.2 目視による評価結果

表-3 に、外周給気フードおよび排気フードの有無に よる5段階の目視評価結果を示す。設置高さ1.5mにお いて、排気フードのみ設置した場合では評価は「4」と なり、給排気一体型制気口のみと同じ結果となった。 同様に、設置高さ 1.5m で外周給気フードを設置した場 合,角形はトルネードが発生せず「1」となったが,丸 形は安定したトルネードの発生となる「5」の評価が得 られた。次に、設置高さを 2.0m とした場合、丸形の外 周給気フードのみを設置してもトルネードが不安定と なり、その評価は「3」に低下した。しかし、外周給気 フードと排気フードの両方を設置することで、評価は 「5」となり、写真-1に示すように安定したトルネード が得られた。しかし、トルネードに揺らぎが生じるこ とで、筒状の排気フードに煙が捕集されない状況が確 認できたため、捕集率の向上には、その形状の検討が 必要であることがわかった。

6. シミュレーションによる評価

6.1 シミュレーションモデル

実測は目視評価のみであったが、定量的な評価を行 うため、CFD によるシミュレーションを実施する。図-6にシミュレーションモデルを示す。シミュレーション は、先ずは4章において試作機で目視評価を行った給 排気一体型制気口(600 ¢)のみ設置したパターンで行う。 次に、5章の改良型試作機で課題を得た排気フード形状 の検討のため、外周給気フード(1,500 ¢)および排気フ ードを設置したパターンについても行う。

設置高さは、図-6(1)に示すように給排気一体型制気 ロのみの場合、床面から給排気一体型制気口の下端ま で2.0mとする。また、外周給気フードおよび排気フー ドを設置した場合の床面からフード下端までの設置高 さは2.1m、フード高さは0.5m(床面から給排気一体型制 気口の下端まで2.6m)とする。給気は、図-6(2)に示す給 排気一体型制気口の下面の外周部に設置した吹出口か ら行い、排気は下面の中央部に設置した吸込口から行 う。

表-3 フード設置の有無による 目視評価結果 Table 3 Visual evaluation results depending on the presence or

absence of a hood is installed

No.	設置 高さ (フード 下端まで)	外周 給気 フード	排気 フード	評価 結果
1	1.5	無	無	4
2	1.5	無	有	4
3	1.5	有(角形)	無	1
4	1.5	有(丸形)	無	5
5	2	有(丸形)	無	3
6	2	有(丸形)	有	5

写真-1 トルネードの 発生状況 Photo.1 The appearance of tornado

6.2 シミュレーション条件と評価方法

CFD の解析条件を表-4 に示す。給排気一体型制気口 のみの場合, SA と EA はそれぞれ 400m³/h~700m³/h の 範囲で100m³/h刻みとする。フード設置時は,給排気一 体型制気口の設置高さが 30%高いため,フード未設置 時で最も高い捕集率となった風量を 30%増加させた風 量とする。

排気フード形状は,表-5 に示すように未設置,筒型, ベルマウス型,円錐型の4 パターン実施する。また, 計算時間は5分とする。

評価は、平均捕集率ηを算出し行う。ηは、式(1)に示 すように計算時間中に吸込口から排気した汚染物質量 *M_cを*,発生した汚染物質量*M*で除した値とする。

6.3 給排気一体型制気口の評価

表-6 に,給排気一体型制気口のみ設置したケースで の平均捕集率を示す。平均捕集率は,SA:600m³/h, EA:700m³/h とした場合が最も高く,42.6%となった。 表-2 で高い評価が得られたケース(SA:700m³/h, EA: 450m³/h)に近いの風量となる SA:700m³/h, EA: 400m³/h およびEA:500m³/hをみると,平均捕集率は約 30%であり,高い評価は得られなかった。また,給排 気風量と評価結果の関係として,シミュレーションで は SA に対し,EA が大きい場合に平均捕集率が高い傾 向となり,実測での目視評価とは逆の結果となった。

6.4 排気フード形状の評価

排気フード形状の評価にあたり,給排気風量は,6.3 で最も捕集率が高い SA:600m³/h, EA:700m³/h から 30%増加させた風量となる SA:800m³/h, EA:900m³/h とする。

図-8 に, 排気フード未設置時の静圧分布とトルネードの可視化状況を示す。給気が旋回しながら床面まで 到達し,外周給気フードの下部が周囲より負圧となる ことでトルネードが形成されるものと推察する。

排気フード形状ごとの汚染物質の垂直断面濃度分布 を図-9 に示す。同図より,排気フード未設置は,周囲 への拡散は少ないが,他の排気フード設置時と比べて 濃度が高い範囲が多い。排気フード形状については, 筒型とベルマウス型は床面付近で広範囲にわたり 0.009g/m³以上となり,円錐型が最も汚染物質の拡散が 抑えられていることがわかった。

表-7 に, 排気フード形状ごとの汚染物質の平均捕集 率を示す。排気フード未設置時の平均捕集率 35.3%に 対し, 筒型の排気フードは 42.1%となり, 排気フード を設置することで約 7%向上した。また, 排気フード形 状は円錐型が最も平均捕集率が良く, 58.3%となった。

表-4 CFD 解析条件 Table 4 CFD analysis conditions

項目	内容
解析ソフト	STREAM ver.14
解析領域	$8 \mathrm{m}(\mathrm{X}) \times 8 \mathrm{m}(\mathrm{Y}) \times 3.1 \mathrm{m}(\mathrm{Z})$
乱流モデル	標準k- ε モデル
流入条件・流出条件	給気風量・排気風量 : 各ケースごとに設定 自由流出境界でエアバランスを確保
汚染物質発生量	10 ⁻³ g/s 排気口直下の床面に配置した 0.1m角立方体から発生

表-5 排気フード形状の条件 Table 5 Exhaust hood shape conditions

$$\eta = M_c \nearrow M \times 100 \tag{1}$$

η [%]: 平均捕集率

M [g]:発生した汚染物質量

Mc [g]: 吸込口から排気した汚染物質量

表-6 平均捕集率の算出結果(給排気一体型制気口のみ) Table 6 Calculation result of average capture efficiency (supply / exhaust integrated air diffuser)

平均捕集率[%]			給気風量	SA [m ³ /h]	
		400	500	600	700
	400	41.9	33.1	30.0	27.2
排気風量 EA [m ³ /h]	500	40.7	37.9	37.2	32.1
	600	31.1	37.4	40.0	37.4
	700	33.2	40.5	42.6	41.3

Fig.8 Static pressure distribution and visualization of tornado (Exhaust hood not installed)

図-9 排気フード形状ごとの汚染物質の垂直濃度分布 Fig.9 Vertical concentration distribution of contaminants by exhaust hood shape

表-7 シミュレーションによる平均捕集率の比較 Table 7 Comparison of average capture efficiency by simulation

	未設置	筒型	ベルマウス型	円錐型
排気 フード 形状	外周給気フード	また おうしょう おうしょう おうしょう おうしょう おうしょう ほうしょう しょうしょう しょう		
平均 捕集率	35.3%	42.1%	48.7%	58.3%

実大実験による評価 7.

前章までは, 試作機を用いた目視評価と, 捕集率を 指標としたシミュレーションによる検討を行った。そ の結果、トルネードを安定して発生させるためには、 本ユニットは給排気一体型制気口と外周給気フード, 排気フードによる構成が良く、排気フードの形状は、 シミュレーションによって円錐型が最も捕集率が高く なる知見を得た。しかし、実測では目視評価に留まり、 定量的な評価について課題があった。

そこで本章以降では、実機を製作し、実大実験で捕 集率の評価を行い、本ユニットの有効性を検証する。

実大実験の概要 7.1

7.1.1 実機の概要

実機は写真-2 に示すように、給排気一体型制気口 (600 ¢),外周給気フード(1,500 ¢),排気フード(円錐型, フード下部:1,000φ, 吸込口接続部:300φ)を用い, 給排気一体型制気口に外周給気フードと排気フードを 接続することで構成する。

(3) フード構成 Photo.2 T - Tornado exhaust unit

7.1.2 システム概要

実験は、本ユニットを某工場の開放空間に設置して 行う。そのシステムの概要を図-10に示す。本ユニット の設置高さは、床面からフード下端までを 2,100mm と する。吹出口からの給気角度は 15°とする。給気およ び排気は、それぞれにファンを設置し、インバータを 用いて風量設定を可能とする。また、給気は外気から 取入れ, 排気は外気へ放出する。

7.2 評価方法

7.2.1 トルネードの目視評価

定量的な評価を行う前段として、本ユニットでトル ネードの発生状況を確認するため、トルネードの目視 評価を行う。目視評価は、煙発生器を使用し、床面か ら煙を発生させ、写真-3 に示すようにトルネードの発 生の有無を評価する。給排気風量は、6章のシミュレー ションで行ったSA:800m³/h, EA:900m³/hを基準とし、 基準からの風量の大小を水準として、SA は 500~ 950m³/h, EA は 800~1,100m³/h の範囲で 50m³/h 刻みで 全 70 ケース実施する。

7.2.2 定量的な評価方法の検討

本ユニットの定量的な評価にあたり,実験上適用可 能な評価方法を検討する。排気性能の評価について, 代表として挙げられるのは,空気齢を測定する方法や, 発生させたパーティクル等の捕集率を測定する方法が ある。

先ず,空気齢を測定する方法は,換気効率が求められるが,既往研究³⁾のように室内空間全体にトレーサ ーガスを一定量散布させる必要があるため,本報のよ うに開放空間で実験を行う場合では,適用が難しい。

次に,捕集率を測定する方法については,実験場所 がクリーンルーム等の清浄度の高い空間ではないため, パーティクルの捕集による測定は難しい。捕集率を測 定する他の方法として,既往研究 4では,局所排気フ ードを対象にトレーサーガスの発生箇所を変え,濃度 比較を行うことで捕集率を算出しており,本報の実験 場所にも適用可能と考えられる。

よって、本報では、定量的な評価方法としてトレー サーガスを用いた捕集率の測定を行うこととする。

7.2.3 捕集率の評価方法の概要

捕集率の評価は、既往研究 4で用いられているトレ ーサーガスを用いた測定法と同様の手法とし、7.2.1 で トルネードが発生した風量パターンでのみ行う。図-11 に捕集率の測定を行うシステムの概要を示す。トレー サーガスは CO₂ を用いる。CO₂ の計測は、排気ダクト 内に CO₂ センサ(図-11 中, A 点)を設置し、その濃度を 測定する。なお、計測された CO₂ 濃度から測定開始前 のバックグラウンド CO₂ 濃度を差し引いたものを測定 濃度とする。CO₂ 濃度の測定時間は 10 分間とし、開始 後および終了前の 1 分間を除く 8 分間で平均捕集率を 算出する。なお、実験は非空調空間で実施し、測定終 了時に室内と排気ダクト内の十分な換気を行う。

捕集率は、図-12 に示すように、発生させた CO₂ が全 て捕集される位置(図-11 中, B 点)に発生源を置いた時

(1)トルネード発生有り
(2)トルネード発生無し
写真-3 目視評価
Photo.3 Visual evaluation

Fig.11 Experimental system for measuring capture efficiency

に排気ダクト内で測定される CO_2 濃度である CO_2_{ref} と, CO₂ 発生源を床面(図-11 中, C 点)に置いた時に排気ダ クト内で測定される CO_2 濃度である CO_2_{mes} の平均濃度 を比較し,式(2)を用いて求める。なお,濃度により捕 集率を算出するため, CO_2_{ref} と CO_2_{mes} の排気風量は同 ーとする。 捕集率の測定は、先ず基本形として本ユニットの下 部に障害物がない状態で行う。その後、捕集率の結果 をもとに決めた測定風量パターンについては、写真-4 に示す机上での作業を想定し、障害物を設置した場合 についても行う。

捕集率[%] =CO_{2 mes}[ppm] / CO_{2 ref}[ppm] × 100 (2)

CO_{2_ref}[ppm]:図-11中,発生源B点時の排気ダクト内のCO₂濃度 CO_{2 mes}[ppm]:図-11中,発生源C点時の排気ダクト内のCO₂濃度

写真-4 障害物ありの測定 Photo.4 Measurement with obstacles

7.3 実大実験の結果および考察

7.3.1 トルネードの目視評価の結果

トルネードの目視評価の結果を表-8 に示す。6.4 のシ ミュレーションでのSA:800m³/h, EA:900m³/hは,ト ルネードが発生しなかった。これは,室内条件がシミ ュレーションと異なるためと考えられる。トルネード が発生した中で最も風量の小さいパターンは,SA: 500m³/h, EA:800m³/h となったが,トルネード形状が 不安定で持続性がなかった。トルネードの発生は, SA:700~900m³/h, EA:1,000~1,100m³/h の範囲が良 好な結果となった。

7.3.2 CO_{2_mes}の測定結果

図-13(1)~(3)に, 排気ダクト内における CO_2 濃度の推移を排気風量ごとに示す。トルネードが発生した中で最も風量の小さい, SA:500m³/h, EA:800m³/h は, CO₂濃度の変動が大きくなった。その後, SA にもよるが, EA:1,000m³/h と増加に伴い, CO₂濃度の変動幅も小さくなった。さらに EA を増加させた EA:1,100m³/h(SA:750m³/h)は, EA:1,000m³/h(SA:800m³/h)と比べて,変動幅が大きくなった。よって, CO₂濃度の変動幅が小さいほど,トルネードが安定していると推察する。

7.3.3 捕集率の評価

図-14に式(2)を用いて算出した、各風量パターンでの 捕集率の測定結果を示す。全体をみると、捕集率は概 ね60%以上となり、6章のシミュレーションで算出した 捕集率である 58.3%と同等以上であった。また, SA: 750m³/h, EA: 1,100m³/h のとき, 捕集率は 82%と最も 良い結果となった。よって、本実験における設置条件 の場合,風量設定は図-13(1)~(3)の結果も考慮すると, SA: 750~850m³/h, EA: 950~1,100m³/h の範囲が妥当 と考えられる。なお、参考として SA: 0m³/h, EA: 950m³/h の排気のみのパターンでも測定を行ったが、そ の捕集率は約9%であることから、トルネードによる排 気を行うことで、効率よく汚染物質が捕集できたと言 える。

図-15に、SA: 800m³/h, EA: 1,000m³/hとし, 写真-4 に示す障害物の有無による捕集率の比較を示す。障害 物ありとなしともに、3回の測定結果は概ね同様となっ た。障害物がある場合は障害物なしの場合に対して,

Fig.14 Average capture efficiency for each air volume

 $(SA : 800m^{3}/h, EA : 1,000m^{3}/h)$

捕集率は約 15%低下したが、それでも約 60%は確保で きていることから、トルネードは高い捕集効果がある と言える。

8. まとめ

本研究において、試作機を用いた目視評価とシミュ レーションによる検証を行った結果、以下の知見が得 られた。

- 1) 給排気一体型ユニットに外周給気フードと排気フー ドを設置することで、トルネードが安定した。
- 2) 排気フードの形状は、円錐型が最も平均捕集率が良 く、58.3%となった。

上記を踏まえ、実機を製作し、実験で捕集率の評価 検証を行い、以下の結果が得られた。

- 3) 捕集率は, 排気のみが約 9%であったが, 本ユニッ トを用いることで、障害物なしでは 60~80%程度と 高い捕集率が得られた。
- 4) 障害物ありでは、約60%の捕集率となった。

以上より, 設定条件を適切に定めた場合は, 本ユニ ットにより, 高い捕集効果が得られることを検証でき た。よって、オイルミスト等の作業空間への拡散を抑 制できることから,環境改善に貢献できることがわか った。

謝辞

本研究は、クリフ(株)との共同研究による成果であり、実 験場所の提供や計測に協力頂いたクリフ(株)の関係各位に謝 意を表します。

参考文献

- 1) 遠藤智行, 倉渕隆: 高効率換気システムの導入による喫煙 室内空気環境の改善に関する研究,日本建築学会環境系論 文集, 第83卷, 第745号, pp.285-292, 2018年3月
- 2) 小川大州, 武藤佳武, 森正夫, 木下裕登: 病院におけるト ルネード局所換気システムの開発と評価 (第4報)低風 量での性能向上および換気効率の数値化に関する研究,空 気調和・衛生工学会大会学術講演論文集(鹿児島), pp.145-148, 2016年9月
- 3) 加藤美好, 三宅伸幸, 樋渡潔, 齋藤正文, 張本和芳: 天井 吹出型パーソナル空調システムの研究 その5 外気高効率 供給タイプ空調機の検討,日本建築学会大会学術講演梗概 集(東北), pp.931-932, 2009年8月
- 4) 小嶋純:トレーサーガスを用いた局所排気フードの捕集 能力評価, 産業衛生学雑誌, 49 巻, pp.209-215, 2007 年