高潮発生時の越波・越流による浸水対策工の検討

二重パラペット護岸設計手法の提案

千綿 蒔*1・織田 幸伸*1・本田 隆英*1

Keywords: storm surge, prevention of inundation, wave overtopping, double parapet, hydraulic experiment, CFD 高潮, 浸水対策, 越波, 二重パラペット, 水理実験, CFD

1. はじめに

1.1 背景

地球温暖化に伴う気候変動により,海面上昇や台風 の強大化が懸念されており,近年国内外で甚大な高潮 災害が発生している。今後,発達した台風が来襲した 場合,既設の護岸高を超える水位上昇による越流や高 波による越波が発生し,甚大な浸水被害が生じる可能 性がある。こうした将来の高潮浸水リスクに対しては, 浸水リスクの評価手法を確立するとともに,リスクへ の適応策の検討が重要な課題となる。

浸水リスク評価手法に関しては,越波や越流による 護岸流入量(越波越流量)の検討や,浸水解析手法の 確立など,いくつかの研究がなされている^{1),2)}。一方で, 高潮浸水リスクに対する適応策については,検討が不 足しており,気候変動に対する具体的な適応策の立案 は喫緊の課題となっている。そこで本研究では,増大 する高潮浸水リスクに対する適応策の検討を目的とし た。

高潮による越波・越流に対する対策工として、図-1 に示すように、①既設パラペットの嵩上げ、②透水型 二重パラペット、③不透水型の二重パラペットといっ た選択肢がある。まず、対策工①は比較的低コストで 対策可能であると考えられる。一方で、嵩上げするの に十分な地耐力がない場合や、景観の観点で難しい場 合も想定される。また、対策工②は、既設護岸前面に 捨石(透水層)とともに低天端のパラペットを設ける 方法である。他手法に比べて低天端で対策可能である が、大規模な護岸改良工事が必要であるため、一般に 高コストで長期の工事が必要となり、護岸線の変更を 伴う場合もある。最後に、対策工③では、既設護岸の 陸側にパラペットを新設することで越波越流量を低減 させる。この手法は,透水型の二重パラペットに比べ て低コストかつ早期の対策が可能である。また,地耐 力や景観の観点で既設パラペットの嵩上げが困難な場 合にも有効な手段であり,前述の①または②の代替の 対策案として有効である。

高潮発生時の越波・越流による浸水対策として、② 透水型の二重パラペットは、別府港海岸、下関港海岸、 横浜市福浦地区護岸等で実際に適用されている¹⁾⁻⁶⁾。こ れらはいずれも、二重パラペットの間が透水性を有し ており、越波した海水は速やかに排水される構造とな っている。一方、本研究では、既設護岸の改修が困難

Fig.1 Characteristic of counutermeasures to reduce overtopping-

overflow discharge

な場合に, 越波浸水対策として陸側にパラペットを新 設する③不透水型の二重パラペット護岸(以降,単に 二重パラペット護岸とする)について検討する。

1.2 本研究の目的

二重パラペット護岸の越波流量 q2 (以降,二重パラ ペット越波流量)に関するパラメタは図-2 に示す通り であり、入射波高 H_0 や波長 L_0 等の波浪条件に加え、 護岸前面の水深h,海底勾配i,前後パラペットの天 端高 h_f, h_b および間隔 l, 堀込深 d 等が越波流量に影 響していると考えられる。

既設パラペットのみの場合, 越波流量 q1 (以降, 既 設パラペット越波流量)は、波浪条件と堤前水深、既 設パラペット天端高等によって推定可能であり、算定 手法が各種提案されている 7,8,9。しかし、二重パラペ ット護岸のパラメタと越波流量の定量的関係を詳細に 分析した既往研究はなく,二重パラペット越波流量の 評価式は確立されていない。このため、越波・越流に 対する適応策として二重パラペット護岸を検討する場 合には、多数のパラメタに対して越波流量を評価する 必要があり,現状では、様々なパラメタに対して水理 実験や数値解析を実施する必要がある。

本研究では、各パラメタと二重パラペット越波流量 の定量的関係を把握し、二重パラペット護岸のパラメ

図-2 二重パラペット護岸のパラメタ

Fig.2 Parameters of the double parapet seawall

タ決定を容易にすることを目的とし、水理実験を行っ た。また、OpenFOAM を用いた数値実験を行うことで、 水理実験よりも広範な条件に対して、二重パラペット 越波流量を算定し、その推定式について検討を行った。

2. 水理実験

2.1 実験方法

本実験では, 想定模型縮尺 1/20 で幅 80 cm の二次元 長水槽(図-3)を用いて、二重のパラペットを配置し た直立護岸に対する越波流量の測定を行った。1/30 勾 配の海底地形と二重パラペット護岸の模型を製作し, 護岸前面の水深は 15 cm で一定とした。造波はフラッ プ式造波装置を用いて行い、造波位置の水深は50 cmと した。越波流量は後側パラペットの背後に集水した水 量を計測時間で割ることで算出した。また、測定時間 前に集水部分に水が流入しないように、後側パラペッ トの上部にゲートを設け、測定開始と終了によって開 閉が可能となる設計とした。

実験ケースを表-1 に示す。入射波は規則波とし、波 高1種類,周期2種類の検討を行った。集水可能な容

Table 1 Experimental conditions and cases			
	縮尺	1/20	
地形	海底勾配 i	1/30	
	堤前水深 h [mm]	150	
	測定波数	5~15波	
規則波	波高 H [mm]	100	
	周期 T [s]	1.3, 1.8	
	前側パラペット	0 20 50	
	天端高 h _f [mm]	0, 30, 30	
二重 パラペット	後側パラペット	20 50 100 200 200	
	天端高 h _b [mm]	50, 50, 100, 200, 500	
	パラペット間隔 <i>l</i> [mm]	100, 300	
	掘込深 d [mm]	50	
単独	天端高 h _c [mm]	30, 50, 100, 200, 300	

表-1 実験条件およびケース

造波 入射方向 ↓ ↓ = 50cm	h 1/30勾酉	= 15 cm ↓ 非水 ↓ 集水	$\stackrel{\bigtriangledown}{=}$
	25.2	35.7	→ x [m]

ペラペット

図-3 実験模型全体の断面概略図

Fig.3 Schematic view of experimental set-up

量に限りがあるため,越波流量によって 5~15 波の範囲 で計測対象波数を変え,計測時間(入射波の周期×波 数)と総流量をもとに越波流量を算出した。なおここ に示した波高は、5章を除き、本実験に先立ち実施した 水深h' = 15 cmの一様水深における入射波検定での波 高であり、地形模型上での波高ではない。また、5章の 二重パラペット越波流量の推定においては、換算沖波 波高を用いている。

護岸形状に関連するパラメタとしては,前側パラペ ットは 0, 30, 50 mm の 3 ケース,後側パラペットは 30 ~300 mm のうち 5 ケース,パラペット間隔は 100, 300 mm の 2 ケースを検討した。護岸前面水深 h や堀込深 d も越波流量に対して影響すると考えられるが,その他 のパラメタに対する越波特性の把握を優先したため, 今回の実験では一定値とした。また比較のため,単独 パラペットケースも天端高 30~300 mm を対象として 5 ケース実施した。

2.2 計測結果

図-4 は護岸周辺の越波状況を示しており,(a),(b)は パラペット間隔のみが異なるケースであり,それぞれ 100 mm,300 mm である。その他のパラメタ条件につい ては図中に示した。図中の左から波を入射し,後側パ ラペットの背後に越波している。*l*=100 mm の場合は, 前側パラペットを越波した水は流速を保ちながら後側 パラペットを越波していた。一方*l*=300 mm の場合 は,一度パラペット間で水の流れる方向が変わること で陸側パラペットを通過する水の流速は小さくなって おり,越波流量は半分程度にまで低減した。このよう にパラペット間隔の違いによって越波流量が大きく異 なることがわかる。

図-5 は後側パラペット天端高と越波流量の関係を, 波の種類ごとに示したものである。色はパラペット間 隔を,マークは前側パラペット天端高を表し,黒破線 は後側パラペットと同じ天端高の単独パラペットの結 果である。ほとんどのケースで,単独パラペットより も越波流量は小さくなっており,二重パラペットより ることによる越波流量低減効果が確認できる。後側パ ラペット天端高が高いほど越波流量は低減し,前述の 通りパラペット間隔も大きい方が越波流量が低減する 傾向にある。前側パラペット天端高の影響は様々であ り,パラペット間隔が小さい場合には,前側パラペッ ト天端高が大きい方が,越波流量が増大する傾向にあ る。逆に,前側パラペットが高い方が越波流量が低減 するケースもあり,二重パラペットの越波流量を検討 する際には,各パラメタを組み合わせて考慮する必要

図-4 水理実験状況(護岸周辺)

(b) 入射波周期 1.8 s

があることがわかる。

3. 数值実験

3.1 解析方法

数値実験は、OpenFOAM (v2006)の interFoam ソルバ ーを用いて、鉛直二次元計算を実施した。解析領域を 図-6 に示すが、水理実験模型を実地形換算して実施し た。解析解像度は図内に示した通りであり、水面付近 および護岸周辺は空間解像度を高く設定した。越波流 量は、護岸断面における VOF 値(各格子の全体積に対 する水の体積比)と流速の積として算出した。計算の 安定化のため、空気相(VOF 値 0.05 未満で定義)の流 速は水相の流速を超えないとする制限を設けた。

3.2 解析ケース

解析ケースを表-2 に示す。前側パラペット天端高 h_f

Fig.6 Schematic view of numerical experiment

表-2 数値実験ケース

Table 2	Cases	of num	nerical	experiment
				1

地形	海底勾配	1/30
	堤前水深 h [m]	3.0
規則波	解析時間 [s]	200 ¹⁾
	波高 H [m]	$2.0, 4.0^{2)}$
	周期 T [s]	5.8, 8.0
二重 パラペット	前側パラペット 天端高 <i>h_f</i> [m]	0.0, 0.6, 1.0, 1.4, 2.0, 2.4, 3.0, 4.0
	後側パラペット 天端高 <i>h</i> _b [m]	0.6, 1.0, 1.4, 2.0, 2.4, 3.0, 4.0
	パラペット間隔 <i>l</i> [m]	2.0, 4.0, 6.0
	掘込深 d [m]	1.0
単独 パラペット	天端高 <i>h_c</i> [m]	0.0, 0.6, 1.0, 1.4, 2.0, 2.4, 3.0, 4.0

1) このうち,始めの100秒間は助走時間として計測対象外 2) 波高4.0 mは周期8.0 sのみ を0m~4mの範囲で8ケース,後側パラペット天端高 h_bを0.6m~4mの範囲で7ケース,パラペット間隔を 2,4,6mの3ケース実施した。ただし,後側パラペット 天端高の方が前側パラペット天端高よりも大きいケー スのみを計算対象とした。また水理実験と同様に,規 則波のみを対象とし,堤前水深h,海底勾配,掘込深 dについては,パラペットの天端高や間隔に比べて越 波流量への影響が小さいと考えて一定値とした。また 比較のため,単独パラペットのケースも実施した。

3.3 解析結果

数値実験の状況を図-7 に示す。図-7 (a) は,波高 2.0 m,周期 8.0 sの入射波に対する,天端高 $h_c = 1.4$ mの単独パラペットのケースであり,図-7 (b),(c) は,これに加えて後側に天端高 $h_b = 2.4$ mのパラペットを 2 m

(a) *H*: 2.0 m, *T*: 8.0 s, *h_c*: 1.4 m

(b) $H: 2.0 \text{ m}, T: 8.0 \text{ s}, h_f: 1.4 \text{ m}, h_b: 2.4 \text{ m}, l: 2.0 \text{ m}$

(c) $H: 2.0 \text{ m}, T: 8.0 \text{ s}, h_f: 1.4 \text{ m}, h_b: 2.4 \text{ m}, l: 6.0 \text{ m}$

(d) H: 4.0 m, T: 8.0 s, h_f: 1.4 m, h_b: 2.4 m, l: 6.0 m
 図-7 解析状況(護岸周辺)

Fig.7 Numerical situation around the seawall

または 6 m の間隔で設置したケースを示す。図-7 (d) は, (c) と同一の護岸条件で入射波高を 4.0 m としたケース である。各図は,越波流量が最大となる時間の状況を 示しているが,二重パラペットによって越波流量が低 減していること,パラペット間隔が大きい方が越波流 量は低減することがわかる。また,本計算条件である 水深 h = 3.0 mでは,波高 4.0 m の入射波は砕波するた め,越波流量はあまり大きくなっていない。

図-8 は、図-5 と同様に、後側パラペット天端高と越 波流量の関係を示したものである。黒破線は後側パラ ペットと同じ天端高の単独パラペットの場合(h_c = h_b) の越波流量を示しており、水理実験と同様に、単独パ ラペットの場合よりも二重パラペットによって越波流 量は低減し、後側パラペット天端高が高いほど越波流 量は低減し、後側パラペット天端高が高いほど越波流 量は低減する傾向にあるが、パラペット天端高が小 さい場合に、その関係が逆転している部分がある。こ れらの越波特性は、概ね水理実験結果と一致しており、 各パラメタと越波流量の関係については、複数のパラ

メタを組み合わせて検討する必要があることが,数値 実験によっても示された。

4. 二重パラペット越波流量の推定式

水理実験(図-5)と数値実験(図-8)の結果より, 二重パラペット護岸における越波流量と各パラメタの 定性的関係を把握した。基本的には,後側パラペット 天端高が高いほど,パラペット間隔が大きいほど越波 流量は小さくなることがわかった。前側パラペットは, あまり大きな影響はないものの,実験条件によっては 大きく越波流量に影響するため,後側パラペット天端 高との関係を考慮する必要がある。

上記の特性を考慮して、二重パラペット越波流量の 推定式について検討する。二重パラペット護岸を通過 する越波流量については、図-2 で示したように、既設 パラペット越波流量 q_1 に対し、後側パラペットの存在 によって q_2 まで低減すると考えることができる。越波 流量の低減ついては、前後のパラペット天端高やパラ ペット間隔の他、入射波諸元が関係すると考えられる。 ここでは、実験縮尺等の影響を除くため、入射波高で 無次元化した無次元越波流量 $q^* = q/\sqrt{gH^3}$ によって評 価する。また、既設護岸に対する二重パラペット越波 流量の低減を越波流量低減率 q_2^2/q_1^* として評価する。

図-9 は、越波低減率と、二重パラペット護岸および 入射波に関する無次元パラメタの関係を示したもので ある。縦軸は越波低減率の対数であり、横軸は無次元 パラメタである。無次元パラメタは、沖波波高に対す

Fig.9 Relation of decreasing rate of overtopping discharge and dimensionless quantity on wave and seawall

る前後パラペット天端の高低差の比,沖波波長に対す るパラペット間隔の比,およびパラペット間隔に対す るパラペット天端高低差の比の3 要素で構成されてい る。水理実験結果(規則波)を見ると,無次元パラメ タと越波低減率は概ね比例関係にあり,次のような関 係式によって表すことが可能と考えられる。

$$\log_{10}\left(\frac{q_2^*}{q_1^*}\right) = \alpha \sqrt{\frac{h_b - h_f}{H_0'} \cdot \frac{l}{L_0}} \left(\frac{h_b - h_f}{l}\right)^{1/4} + \beta \qquad (1)$$

ここで、 α , β は比例定数である。前述の通り、 q_1^* は各 種の手法によって推定可能であるため、本式と併用す ることで、不透水型二重パラペット護岸の諸元を設定 することができる。規則波の水理実験結果より推定し た場合, $\alpha = -7.41$, $\beta = 0.13$ となった。数値実験結 果のなかで、波高4mの結果は、推定式に対してやや 下方に外れている。波高4mのケースでは護岸前面で 砕波していることを確認しているが、本推定式では沖 波で評価したため,これを考慮できていないためと考 えられる。このように,護岸前面で砕波が生じる場合 の取り扱いについては、今後継続して検討を行う予定 である。また本検討では,護岸前面水深や海底勾配, 堀込深等,パラメタのケース数が十分とはいえず,さ らに不規則波に対して係数値の適用可否を確認する必 要がある。一方で、今回の検討ケースに対しては水理 実験結果を概略再現することができており、二重パラ ペット護岸の設計時、必要天端高や間隔の設定のため に活用可能と考える。

二重パラペット越波流量の推定式を用いた検討例

ここでは、仮想的な護岸および高潮条件に対する越 波流量低減方法として二重パラペットを施工する場合 を想定し、後側パラペットの必要な高さおよび位置を 提案式を用いて検討するケーススタディを実施する。 検討条件を図-10および表-3に示す。ここで仮定した高 潮偏差,波浪,既設パラペット天端高等の条件から, 想定される越波流量を高山ら^のの推定式によって求め ると、 $q_1 = 0.0472 [m^3/s/m]$ となる。港湾基準¹⁰⁾では、 重要地区に対する許容越波流量として、 $q_2 = 0.02 m^3/s/m$ を定めており、これを二重パラペット設 置後の目標越波流量とする。このとき、越波流量低減 率は $\log_{10}(q_2/q_1) = -0.373$ となる。 二重パラペット越波流量の推定式(1)は,以下のよう に変形可能である。

$$h_b = \left\{\beta - \log_{10}\left(\frac{q_2}{q_1}\right)\right\}^{4/3} (H'_0 L_0)^{2/3} \{(-\alpha)^4 l\}^{-1/3} + h_f \quad (2)$$

上式に,与条件 H'_0 = 3.0 m, T_0 = 10 s から求めた L_0 = 156.0 m,および α = -7.41、 β = 0.13,越波流量低減 率-0.373 を代入すると、下記のように後側パラペット の必要高さを求めることができる.後側パラペットの 高さは、前後パラペットの間隔との関係式として求め られ、パラペット間隔l = 3,5,10 m の場合、表-4 のよ うになる。

前後パラペット間隔を 3 m とすれば,後側パラペット高は 2.16 m 必要であるが,パラペット間を 10 m とすることで,後側パラペットの天端高を 40 cm 程度小さ

図-10 ケーススタディの波浪・護岸条件

Fig.10 Wave and seawall parameters in the case study

表-3 ケーススタディの波浪・護岸条件

```
        Table 3
        Wave and seawall parameters in the case study
```

換算沖波波高 H' ₀ [m]	3.0
沖波周期 T ₀ [s]	10.0
想定高潮偏差 △h [m]	2.0
既設パラペット天端高 h _f [m]	3.5
護岸前面水深 h [m]	7.5
海底勾配 i [-]	1/30
越波流量(対策前) q ₁ [m ³ /s/m]	0.047
許容越波流量 q ₂ [m ³ /s/m]	0.020

表-4 ケーススタディの結果

Table 4 Results of the case study

パラペット間隔 <i>l</i> [m]	後側パラペットの必要高 <i>H_b</i> [m]
3.0	2.16
5.0	1.98
10.0	1.77

くすることができる。このように、二重パラペット越 波流量の推定式を用いることで、想定される越波・越 流のリスクに対し、新設する後側パラペットの高さお よび位置を推定することができる。

6. 結論

本研究では、水理模型実験および OpenFOAM を用い た数値実験によって、高潮浸水に対して比較的簡易に 対策可能な不透水型二重パラペット護岸の越波流量に ついて検討を行った。実験結果より、越波流量低減に 対する有効性を示すとともに、越波流量低減のために は、前後パラペットの天端高や間隔等の複数のパラメ タの組み合わせを考慮する必要があることを示し、波 浪や護岸諸元を用いて二重パラペット越波流量を算定 可能な実験式を提案した。また、既設護岸において想 定される越波・越流リスクに対して二重パラペット護 岸を検討する場合に、新設する後側パラペットの位置 および必要高さを簡単に推定できる手順を示した。本 研究では、堤前水深や掘込深等の一部パラメタは一定 値としたためさらなる検討が必要であるが、二重パラ ペット護岸の設計に資する有用な成果が得られた。

参考文献

 千綿蒔,羽角華奈子,織田幸伸,伊藤一教:高潮浸水評 価の高精度化に関する研究,越波・越流による護岸通過 流量の数値実験,大成建設技術センター報, No.53, 2020.

- 2) 千綿蒔,織田幸伸,橋本貴之:高潮浸水評価の高精度化 に関する研究,越波・越流による護岸通過流量及び浸水 位に関する水理実験,大成建設技術センター報, No.54, 2021.
- 平石哲也・南靖彦・長谷川巌:越波吸収型護岸による海 上空港の越波対策,海岸工学論文集, Vol.54, pp.741-745, 2007.
- 4) 梅崎康浩・小島治幸・南正治・鬼童孝・白井博巳・笹井 剛・石本健治・松原弘晃:二重パラペット型護岸(透水 型)に対する数値波動水路と水理模型実験を用いた効果 的な設計に関する考察,土木学会論文集 B2(海岸工学), Vol.68, No.2, pp.I_741-I_745, 2012.
- 5) 長澤大次郎・岸良安治・高山知司・梅崎康浩・久米英 輝:透水性二重護岸の越波特性の検討, 土木学会論文集 B2 (海岸工学), Vol.67, No.2, pp.I_691-I_695, 2011.
- 長澤大次郎・高山知司・久保田進:透水性二重護岸による護岸改良の各種海岸への適用法,土木学会論文集 B2 (海岸工学), Vol.71, No.2, pp.I_1141-I_1146, 2015.
- 高山知司,永井紀彦,西田一彦:各種消波工による越波 流量の減少効果,港湾技術研究所報告,Vol.21,No.2, pp.151-205, 1982.
- 8) 間瀬肇,金洙列,由比政年,武田将英,楳田真也,川崎 浩司,松下紘資:フルスケール実験に基づく越波・越流 遷移モデルと高波・高潮浸水シミュレーションへの実装, 土木学会論文集 B2 (海岸工学), Vol.76, No.1, pp.7-19, 2020.
- 9) 合田良美・岸良安治・神山豊: 不規則波による防波護岸の越波流量に関する実験的研究,港湾技術研究所報告, Vol.14, No.4, pp.3-44, 1975.
- 公益社団法人 日本港湾協会:港湾の施設の技術上の基準・同解説 (上巻), p.176, 2018.