コンクリート系工業化住宅(パルコン)の接合部性能確認実験

小坂 英生*1· 增田 正樹*2· 渡辺 英義*1· 是永 健好*1· 福田 一久*2· 石井 映二*3

Keywords: reinforced concrete, industrialized concrete housing system, precast concrete, slab, wall, joint 鉄筋コンクリート,工業化住宅,プレキャスト,床,壁,接合部

1. はじめに

3階建て以下を対象としていたコンクリート系工業化住 宅の適用範囲を4階建てまで拡大する場合、1階部分が負担 する地震力は増大する。これに対応するためには、壁板お よび床板の強度を向上させるとともに、接合部の耐力を確 保することが重要となる。また、耐久性に優れたコンク リート系工業化住宅はリフォームに伴う増築・移築に対す る要望が多く寄せられており、これに対応した接合部の開 発が必要となる。本報では、床板接合部のせん断耐力、床 板接合部の引張耐力、壁板接合部のせん断耐力を確認する ために行った一連の実験結果を報告する。

床板接合部せん断実験 2.

2.1 実験計画

試験体一覧を表-1に、シアキー部の詳細および試験体形 状を図-1、図-2に示す。試験体は外形寸法(1365×1210 ×150)とシアキー形状(中央部3箇所)を共通とした8体 である。S-1~S-5は接合筋量を実験パラメータとした試 験体、S-6、S-7はそれぞれ移築、増築を想定して接合筋

試験体	コンク	ッリート	充填 モルタル	接合筋	備考
S-1				4- <i>ϕ</i> 6	接合筋少
S-2				2-D10	\uparrow
S-3	Ea	20		6- <i>φ</i> 6	接合筋中
S-4	FC30		標準	2-φ6+2-D10	\downarrow
S-5				4-D10	接合筋多
S-6				4- <i>ϕ</i> 6	移築対応
S-7	Fc30	Fc15		4- φ 6	増築対応
S-8	Fc30		低強度	4-φ6	充填モルタル強度の影響

表-1 試験体一覧 List of Specimens

の配筋形状と施工方法を模擬した試験体、S-8は充填モル タルを低強度とした試験体である。移築・増築を想定した S-6、S-7試験体の製作は、1)あらかじめS-1試験体と同様 に製作、2) 接合面で切断、3) 既設接合筋表面までの充填 モルタルのはつり、4)それらを覆うような新設接合筋の配

技術センター建築技術研究所建築構工法研究室 * 1 住宅事業本部商品開発部

* 2

技術センター建築技術研究所防災研究室 * 3

置、5)新たなモルタルの充填という順序によって行った。

コンクリートと充填モルタルの材料試験結果を表-2に、 鉄筋の材料特性を表-3に示す。床板コンクリートには Fc30とFc15の軽量1種コンクリートを用いた。加力は図-3に示すように10MN試験機を用いた大野式せん断加力と し、単調載荷とした。変位の測定は左右床板間の相対変位 と3箇所のシアキーの開き変位について行い、鉄筋のひず み測定は中央部シアキーのアンカー筋と接合筋について 行った。

2.2 実験結果

最終破壊状況を図-4に、せん断カー相対変位関係を図-5に示す。また、実験結果および計算結果一覧を表-4に示 す。いずれの試験体においても220~260kN付近でシア キーにせん断ひび割れが発生して剛性が低下した。各試験 体ともシアキーの支圧による損傷および上下の加力位置で の床板自体の支圧による損傷が顕著であった。

S-5を除く全ての試験体においては、接合筋の降伏が生じた後に最大耐力に達し、アンカー筋の降伏は確認されな

表-2 コンクリートの材料試験結果 Test Results of Concrete

使用部位	圧縮強度 [N/mm ²]	ヤンク [*] 係数 [kN/mm ²]	ポアソン比	割裂強度 [N/mm ²]
床板コンクリート(Fc30)	40.4	18.7	0.22	3.04
床板コンクリート(Fc15)	23.3	15.3	0.20	2.17
充填モルタル(標準)	49.9	25.0	0.21	3.87
充填モルタル(低強度)	36.9	23.7	0.20	2.48

表-3 鉄筋の材料特性

Mechanical Properties of Steel Reinforcement

使用部位	径	降伏点 [N/mm ²]	引張強さ [N/mm ²]	伸び [%]	ヤング係数 [kN/mm ²]
接合筋	φ6	334	497	28.1	210
接合筋 アンカー筋	D10	376	535	18.6	187

かった。それに対して、接合筋量の最も多いS-5試験体で は、アンカー筋降伏後に最大耐力に達し、その後接合筋の 降伏も確認された。

接合筋量をパラメータとしたS-1~S-5試験体では、せん断耐力は接合筋量が多いほど増加する傾向がみられた。 移築を想定したS-6試験体は同じ接合筋量のS-1試験体と ほぼ等しいせん断耐力であった。また、増築を想定したS-7試験体および充填モルタルを低強度としたS-8試験体の せん断耐力はS-1試験体と比較して低下しており、S-1試 験体の最大耐力の88~95%程度であった。

表-4 実験結果および計算結果一覧 List of Test and Calculation Results

試驗休	eQc	е Q _{у,и}	е Q _{у,j}	e Q u	c Q u
中心人产	(kN)	(kN)	(kN)	(kN)	(kN)
S-1	222.1	未発生	344.0	431.9	393.2
S-2	233.4	未発生	334.2	441.7	439.0
S-3	222.9	未発生	293.8	478.4	447.6
S-4	227.5	未発生	404.9	511.3	488.2
S-5	261.5	515.6	528.1	542.0	593.5
S-6	254.5	未発生	289.6	436.3	393.2
S-7	確認できず	未発生	241.0	381.3	393.2
S-8	236.1	未発生	333.2	410.4	319.1

ここに、 $_eQ_c$:ひび割れ発生時せん断力、 $_eQ_{y,u}$:アンカー筋降伏時せん断力、 $_eQ_{y,i}$:安かカー筋降伏時せん断力、 $_eQ_u$:最大せん断耐力、 $_cQ_u$: 文献1)によるせん断耐力計算値

Shear Force - Displacement Relations

2.3 実験結果の検討

せん断耐力の実験値と計算値の比較を図-6に示す。せん 断耐力の計算は文献1)に示されている(1)式によって行な い、シアキーせん断面積Ascは200×95=19000mm²とした。

$$cQu = 0.1 \times Asc \times \sigma_{p} + \Sigma As \times \sigma_{V}$$
(1)

ここに、 Asc :シアキーせん断面積(mm²)

σ_B:充填モルタル強度(N/mm²)

As : 鉄筋断面積(mm²)

σy : 鉄筋降伏強度(N/mm²)

各試験体の最終破壊状況は(1)式で想定している破壊メ カニズムとは異なるという問題点があるものの、(1)式に よってせん断耐力実験値を概ね評価可能である。

3. 床板接合部引張実験

3.1 実験計画

試験体一覧を表-5に、T-9~T-12試験体のシアキー部の 詳細および試験体形状を図-7、図-8に示す。試験体の外 形寸法(910×1210×150mm)およびシアキー位置(2箇 所)は全試験体で共通である。T-1~T-8試験体のシア

Comparison of Test and Calculation Value

表-5	試験体一覧
	List of Specimens

試験体	コンク	リート	充填 モルタル	接合筋	備考
T-1	Fc30			4-φ6	接合筋少
T-2				2-D10	Î
T-3				6-φ6	接合筋中
T-4			標準 ^(*1)	2- φ 6+2-D10	\downarrow
T-5				4-D10	接合筋多
T-6				4-φ6	移築対応
T-7	Fc30	Fc15		4-φ6	増築対応
T-8			低強度	4-φ6	充填モルタル強度の影響
T-9	Fc30			4-φ6	差し筋(1-D10直型)
T-10			+m %#(*2)	4-φ6	差し筋(2-D10直型)
T-11			悰毕	4-φ6	差し筋(1-D10U型)
T-12				4-φ6	コッター深さ150mm

キーは前章のS-1~S-8試験体と同様とした。T-9~T-11試 験体のシアキーは引張力作用方向と直角に差し筋(D10)を 挿入し、それぞれ差し筋量と形状をパラメータとしたもの である(図-7(a)~(c)参照)。また、T-12試験体はシア キー深さを床板厚さと同じ150mmにしたものである(図-7 (d)参照)。

コンクリートと充填モルタルの材料試験結果を表-6に、 鉄筋の材料特性を表-7に示す。床板コンクリートには Fc30とFc15の軽量1種コンクリートを用いた。加力は図-9に示す方法によって行い、単調載荷とした。

図-7 シアキー部の詳細(T-9~T-12) Details of Shear-Key (T-9~T-12)

表-6 コンクリートの材料試験結果 Test Results of Concrete

使用部位	圧縮強度 [N/mm ²]	ヤンク [*] 係数 [kN/mm ²]	ポアソン比	割裂強度 [N/mm ²]
床板コンクリート(Fc30)	40.7	18.7	0.22	3.12
床板コンクリート(Fc15)	22.9	15.3	0.20	2.43
充填モルタル(標準 ^(*1))	52.4	25.0	0.21	3.80
充填モルタル(標準 ^(*2))	41.1	25.2	0.21	3.87
充填モルタル(低強度)	37.8	23.7	0.20	2.95

3.2 実験結果

引張力-変位関係を図-10に、実験結果および計算結果 一覧を表-8に示す。また、T-2試験体のシアキーの破壊状 況を一例として写真-1に示す。

いずれの試験体とも、最終破壊状況は写真-1に示すよう なアンカー筋の付着破壊によるものであり、最大耐力はア ンカー筋もしくは接合筋の全断面降伏時引張力には達して いない。

接合筋量をパラメータとしたT-1~T-5試験体の引張耐 力に有意な差はみられず、接合筋量の引張耐力に及ぼす影 響は少ない。移築・増築を模擬したT-6およびT-7試験体 は、T-1~T-5試験体よりも引張耐力は若干低かった。ま た、低強度の充填モルタルを使用したT-8試験体は最も低 い引張耐力を示した。このことから、充填モルタル強度は 引張耐力に大きく影響を与えると考えられる。

差し筋を有するT-9~T-11試験体は、充填モルタルの強 度が若干低いにもかかわらずT-1~T-5と同等もしくはそ

表-7 鉄筋の材料特性

Mechanical Properties of Steel Reinforcement

使用部位	径	降伏点 [N/mm ²]	引張強さ [N/mm ²]	伸び [%]	ヤング係数 [kN/mm ²]
接合筋	φ6	334	497	28.1	210
接合筋 アンカー筋 差し筋	D10	376	535	18.6	187

れ以上の引張耐力を有していた。このことより、差し筋は 引張耐力の向上に寄与するものと考えられる。また、最大 引張耐力以降の耐力低下も改善されている。

さらに、シアキー深さを150mmとしたT-12試験体の引張 耐力は最も大きかった。T-12以外の試験体では、アン カー筋の付着面の破壊状況や下端のアンカー筋がシアキー 底部の床板に接していることから推察して、下端のアン カー筋は引張力の伝達にあまり寄与していなかったと考え られる。T-12試験体のように下端のアンカー筋と充填モ ルタル間の付着を改善することは、引張耐力の向上に有効 である。

表-8 実験結果および計算結果一覧 List of Test and Calculation Results

試験体	e^{T_c}	$e T_{y,u}$	$e^{T_{y,j}}$	$e^{T}u$	$_{c}T_{u}$
	(KN)	(KN)	(KIN)	(KN)	(KN)
T-1	76.8	未発生	67.8	76.8	81.9
T-2	74.0	未発生	未発生	77.3	81.9
T-3	76.1	未発生	74.2	76.6	81.9
T-4	82.3	未発生	81.7	88.7	81.9
T-5	62.9	78.4	未発生	81.7	81.9
T-6	74.0	未発生	53.3	74.0	73.7
T-7	69.4	未発生	未発生	69.4	73.7
T-8	58.8	未発生	58.8	58.8	65.9
T-9	62.6	50.8	74.3	80.7	80.4
T-10	57.7	83.8	76.0	86.1	91.1
T-11	39.5	70.1	70.1	71.4	80.4
T-12	58.2	96.9	99.3	99.3	92.9

ここに、 $_{e}T_{c}$:ひび割れ発生時引張力、 $_{e}T_{y,u}$:アンカー筋降 伏時引張力、 $_{e}T_{y,j}$:接合筋降伏時引張力、 $_{e}T_{u}$:最大引張耐 力、 $_{c}T_{u}$:(1)式による引張耐力計算値

写真-1 シアキーの 破壊状況 (T-2) Final Destructive States of Shear-Key (T-2)

3.3 実験結果の検討

実験結果より、引張耐力はアンカー筋の付着強度によっ $_{90}$ て決定しているものと考えられる。ここでは、靭性保証指 4^{20} の柱梁接合部の付着強度評価式を参考に、付着強度が 80 充填モルタル強度の2/3乗に比例すると考えて引張耐力評 $_{70}$ 価法の提案を行う。圧縮強度以外の要因として差し筋の影 響についても考慮し、その効果は Σ As σ yに比例するもの 60 とした。(2)式に評価法を示す。 50

$$cTu = \alpha \times \beta \times \sigma_{R}^{2/3} \times \psi e \times 1e + \gamma \times \Sigma As \sigma y \quad (2)$$

ここに、 α : 付着強度の係数

ν

- β :低減係数(通常は1.0)
- ψ e : 付着有効周長(mm)
- 1e : 付着有効長さ(mm) (=100mm)
 - : 差し筋の係数

(2)式中の係数 α および γ は計算値と実験値の差の二乗 が最小となるように定めたものであり、 α =0.65、 γ =0.10を用いる。また、移築・増築を模擬したT-6、T-7試 験体は既設接合筋と新設接合筋の間に打ち継ぎ面が存在す ることからその影響を低減係数 β (=0.9)によって評価 した。さらに、付着有効周長 ϕ eは、上端のアンカー筋に ついては全周長、下端については周長の半分だけを考慮し た(T-12試験体は上端下端とも全周長を考慮した)。

引張耐力の実験値と(2)式による計算値の比較を図11に 示す。図11より、(2)式によって実験結果を概ね評価し得 ると考えられる。

4. 壁板接合部せん断実験

4.1 実験計画

試験体一覧を表-9に、シアキー部の詳細および試験体形 状を図-12、図-13に示す。試験体は外形寸法(900×1210 ×150)とシアキー形状(中央部3箇所)を共通とした3体 である。接合長円形筋径およびアンカー筋径を実験パラ メータとし、W-1は接合長円形筋およびアンカー筋にそれ ぞれD10と φ6を、W-2はD13と φ6を、W-3はD10とD10を使 用した試験体である。差し筋は全試験体共通でD13を使用 した。充填モルタルの打設は、接合長円形筋などを配筋し た側を上面にして横打ちで行った。

コンクリートと充填モルタルの材料試験結果を表-10 に、鉄筋の材料特性を表-11に示す。壁板コンクリートに はFc30の軽量1種コンクリートを用いた。加力は図-14に 示すように10MN試験機を用いた大野式せん断加力とし、 単調載荷とした。変位の測定は左右壁板間の相対変位と3 箇所のシアキーの開き変位について行い、鉄筋のひずみ測 定は中央部シアキーのアンカー筋と接合長円形筋および差

図-13 試験体形状 Shape of Specimens

Loading Setup

表-9 試験体一覧

	List of Specificity						
試験体	コンクリート	接合長 円形筋	アンカー筋	差し筋			
W-1		D10	φ6	D13			
W-2	Fc30	D13	φ6	D13			
W-3		D10	D10	D13			

表-10 コンクリートの材料試験結果 Test Results of Concrete

使用部位	圧縮強度 [N/mm ²]	ヤンク [*] 係数 [kN/mm ²]	ポアソン比	割裂強度 [N/mm ²]
壁板コンクリート(Fc30)	39.9	18.7	0.22	3.06
充填モルタル	42.9	25.0	0.21	3.88

表-11 鉄筋の材料特性

Mechanical Properties of Steel Reinforcement

使用部位	径	降伏点 [N/mm ²]	引張強さ [N/mm ²]	伸び [%]	ヤング係数 [kN/mm ²]
アンカー筋	φ6	479	536	16.1	210
	D10	372	507	18.6	187
接合長 円形筋	D10	376	535	18.6	187
	D13	384	539	16.1	187
差し筋	D13	382	540	17.6	188

し筋について行った。

4.2 実験結果

最終破壊状況を図-15に、せん断力-相対変位関係を 図-16に示す。また、実験結果および計算結果一覧を表-12に示す。

W-1試験体は、Q=188kNにおいてシアキーにせん断ひび 割れが発生して剛性低下し、Q=276kNで最大耐力に達した 後、 δ =2mm付近で破壊に至った。

接合長円形筋断面を大きくしたW-2試験体は、Q=178kN においてせん断ひび割れが発生し、Q=233kNで最大耐力に 達した直後、δ=1mm付近で破壊に至った。

アンカー筋断面を大きくしたW-3試験体は、Q=245kN付 近で接合部にせん断ひび割れが発生して剛性低下し、 Q=465kN、 δ =2.3mmで最大耐力に達した。その後、緩やか に耐力低下したが、 δ =15mmにおいても最大耐力の6割を 保持した。

W-3試験体では、最大耐力以降にアンカー筋および接合 長円形筋の降伏が確認されたが、その他の試験体では降伏 は確認されなかった。

4.3 実験結果の検討(壁板接合部せん断実験)

せん断耐力の実験値と計算値の比較を図-17に示す。せん断耐力の計算は前述2.3節の(1)式によって行なった。

各試験体の最終破壊状況は(1)式で想定している破壊メ カニズムとは異なるという問題点があるものの、図-17よ り(1)式によって多少危険側ではあるがせん断耐力実験値 を概ね評価可能である。

5. まとめ

- (1) 床板接合部のせん断耐力の向上には接合筋の量を多く することが効果的である。
- (2)床板接合部の引張耐力はアンカー筋の付着および差し 筋によって決定しており、本文中の(2)式によって実験 結果を概ね評価し得る。
- (3) 壁板接合部のせん断耐力の向上にはアンカー筋の量を 多くすることが効果的である。
- (4)床板接合部および壁板接合部のせん断耐力は、壁式プレキャスト鉄筋コンクリート造計算規準・同解説¹⁾に示されている本文中(1)式によって概ね評価し得る。

参考文献

- 日本建築学会:壁式プレキャスト鉄筋コンクリート造設計 規準・同解説,1982
- 2)日本建築学会:鉄筋コンクリート造建物の靭性保証型耐震 設計指針・同解説, 1999

試験体	е Q с (kN)	е Q _{у,и} (kN)	е Q _{у,j} (kN)	е Q и (kN)	$_{c}Q_{u}$ (kN)
W-1	188.3	_	—	275.5	336.3
W-2	177.9	_	—	233.2	336.3
W-3	245.3	435.2	394.9	464.8	486.1

ここに、 $_e Q_c$:ひび割れ発生時せん断力、 $_e Q_{y,u}$:アンカー筋降伏時せん断力、 $_e Q_{y,j}$:接合長円形筋降伏時せん断力、 $_e Q_u$:最大せん断耐力、 $_c Q_u$:支献1)によるせん断耐力計算値

