液状化解析技術

-3次元解析および2次元解析の適用事例-

船原 英樹*1·宇野 浩樹*2·立石 章*2

Keywords: liquefaction, effective stress analysis, elasto-plastic model, pile foundation, quay wall, underground structure 液状化,有効応力解析,弾塑性モデル,杭基礎,護岸,地中構造物

1. はじめに

地震時に液状化する可能性がある地盤において、土 木・建築構造物を設計する際には、液状化の影響を考慮 した基礎・地盤の安定性および上部構造物の安全性を検 討する必要がある。液状化現象を精度良くシミュレート しつつ耐震検討を行うツールとして、当社は LIQCA お よび DIANA-SD という液状化解析プログラムを保有し ている。兵庫県南部地震を契機に本技術の必要性が高ま り、すでに多くの研究事例、実務設計事例を蓄積してき ている。本稿では、まず液状化解析技術の概要を示し、 次にシミュレーション解析に基づく本技術の妥当性の検 証事例を述べ、最後に適用事例を紹介する。

2. 液状化解析技術の概要

液状化は、緩く堆積し、かつ地下水で飽和している砂 質地盤で発生しやすい。液状化とは、地震時に地盤内に 作用する繰返しせん断により間隙水圧が上昇し、土粒子 間のかみ合わせがはずれ、有効応力がゼロになる結果、 地盤がそのせん断強さを失う現象である¹⁾。

当社が保有している液状化解析プログラム LIQCA お よび DIANA-SD は、いずれも、土の有効応力に基づき、 土の相と水の相に関する力の釣り合いを考慮して定式化 された、いわゆる Biot の二相系の支配方程式²⁾に立脚し た有限要素法プログラムである。二相混合体理論に基づ くことにより、間隙水圧の上昇および消散の影響を考慮 した地震応答解析が可能となる。

土骨格の有効応力とひずみの関係を規定する構成則として、LIQCA では岡・八嶋による砂の繰返し弾塑性モデル(以下、岡・八嶋モデル)^{3), 4)}を、DIANA-SD では

* 1	技術センター建築技術研究所建築構工法研究室
* 2	技術センター土木技術研究所地盤・岩盤研究室

Stress-Density Model(以下、SDモデル)⁵⁾をそれぞれ採用 している。いずれの構成則も、古典的な弾塑性理論に基 づいた、降伏条件、硬化則および流れ則(ストレス〜ダ イレイタンシー関係を含む)の 3 つの条件式で構成され ている。なお、流れ則は、塑性ひずみの方向(成分比)を 規定する塑性ポテンシャル関数を、降伏関数とは別のも とする非関連型である。

岡・八嶋モデルでは、応力空間内の降伏曲面の変化は 非線形移動硬化則に基づいている。さらに、正規圧密領 域(NC)と過圧密領域(OC)の境界を表す過圧密境界面に よって塑性ポテンシャル関数を規定しており、応力状態 が境界面の外側(NC)にある場合は過剰間隙水圧Δu が発 生しやすく、境界面の内側(OC)の場合はΔu が発生しに くくなるように制御している。図-1 に岡・八嶋モデル が繰返しせん断を受けた際の有効応力径路と過圧密境界 面 f_bを示す。

一方、SDモデルは、平均有効応力 p と間隙比 e から 計算される変数 I_s(図-2)により、同一種類の砂のせん断 応力比とせん断ひずみの関係(骨格曲線)が唯一決まると いう性質をモデル化している。これにより、同一種類の 砂により構成された地層であれば、異なる深度や異なる 締まり具合の層でも、同一パラメータでモデル化できる というメリットがある。

Mean normal stress, p

図-2 SD モデルにおける状態変数 I_sの定義⁵⁾ Definition of State Index I_s

3. 解析技術の妥当性の検証

3.1 遠心模型実験のシミュレーション解析⁶⁾

3.1.1 実験概要

遠心加速度 40G 場において図-3 に示す杭基礎模型で 振動実験を行った。本稿では一連の実験ケースのうち、 加振時に杭を降伏させたケースについて示す。

模型地盤は豊浦砂で、相対密度 D_r=60%の層(層厚 t=220mm、以下、「上層」)と D_r=90%の層(t=100mm、以 下、「下層」)からなる 2 層地盤とし、地表面まで 40cSt のシリコンオイルで飽和させた。杭模型は鋼管杭を模擬 した鉄製パイプ(外径 D=9.5mm)を用い、杭間隔が約 6D (60mm)で 2×2 の 4 本群杭とした。建屋基礎模型はステ ンレス製とし、40G 場における杭の軸応力が、一般的な 建築物の鋼管杭と同程度になるような質量を与えた。ま た、入力地震動は、兵庫県南部地震におけるポートアイ ランド GL-83m での観測記録の EW 成分(最大加速度 3.03m/s²)とした。

3.1.2 解析条件

図-4 に解析モデルを示す。豊浦砂 D_r=60、90%の各層 は8節点ブリック要素とし、岡・八嶋モデルでモデル化 した。また、杭は梁要素とし、ファイバーモデルでモデ ル化した。さらに、杭〜地盤接触面は、二重節点として、 杭周面の水平方向は剛結し、せん断方向は摩擦強度を極 限とするバイリニアモデルの弾塑性ばねを、杭下端の鉛 直方向には引張力カットの非線形弾性ばねを挿入した。 解析コードは LIQCA(3 次元)である。

3.1.3 実験結果と解析結果の比較

以下の実験結果および解析結果は、40G場の遠心模型 スケールで示す。

1) 地盤の挙動

図-5 に過剰間隙水圧比(Δu/σ_{v0})の時刻歴を示す。上層 では解析の方が若干早く増加するが、0.1 秒付近でほぼ 1.0 に達して液状化するという実験結果をシミュレート することができた。一方、下層では実験、解析ともに 1.0 に達していない。また、図-6 に水平加速度の時刻歴 を示す。地表面の応答は 0.1 秒付近から振幅が低下して 長周期化するという実験結果を解析で再現できた。一方、 層境界の応答は実験、解析ともに短周期成分が卓越して おり、液状化していないことを裏付けている。さらに、 建屋基礎模型の応答は、両者とも上層が液状化に達する 0.1 秒付近から応答が低下し、長周期化している。

2) 建屋基礎模型の挙動

図-7 に建屋基礎における水平加速度と地盤底面から の相対水平変位の時刻歴を示す。両者とも上層の影響を 受け、0.1 秒付近から長周期化していることが分かる。

3) 杭の曲率における挙動

図-8 に杭頭および層境界における杭の曲率の時刻歴 を示す。杭の曲率が 0.1 秒付近から長周期化するという 実験結果を解析できた。さらに、図-9 に杭頭でピーク が発生する 2 時刻に対する曲率の同時刻深度分布を示す。 過剰間隙水圧の増加初期では、上層の地盤抵抗によって 実験、解析ともに杭頭で降伏曲率を超える最大値が発生 し、上層の中で極大値が発生する分布になっている(図-9(a)参照)。これに対し、液状化後は上層の地盤抵抗がほ ぼ0になるため、杭頭のみでなく層境界においても降伏 曲率を超える値を示し、杭頭との間でほぼ直線的な分布 になっている(図-9(b)参照)。

3.2 大型振動台実験のシミュレーション解析

3.2.1 実験概要

液状化解析手法の検証のため、大型せん断土槽を用い た液状化地盤における鋼管杭の振動台実験を対象とし、 シミュレーション解析を実施した。

図-10 に試験体の概要図を示す。せん断土槽の内部に 水で飽和した地盤模型と杭模型が設置されている。地盤 模型は土槽底面から 1.5m の礫層、4m の飽和砂層(液状 化層)、0.5m の乾燥砂層の全 3 層で構成されている。砂 層には霞ヶ浦砂($D_{50}=0.31$ mm)を用いた。杭模型は、4 本 の鋼管杭(径:165mm、長さ:5.3m)と基礎部(質量:2.1 ×10³kg)および上部構造(質量:14.2×10³kg、固有周 期:0.8 秒)で構成されている。基礎部は、表層に 0.5m 根入れされている。また、杭頭は基礎部に剛結されてお り、杭先端はピン支持されている。入力地震波は、臨海 波(最大加速度 240gal に調整)を用いた。鋼管杭の軸方向 に密に配置したひずみゲージにより、杭の曲げモーメン トのみならず、せん断力や水平地盤反力まで、精度よく 実測された。

3.2.2 解析モデル

杭の曲げのみならず、せん断力や地盤反力にまで着目 し、動的シミュレーションの対象とした例は少ない。本 研究では、杭の水平地盤反力に着目した実験結果のシミ ュレーションを試みた。図-11 に試験体を模擬した解析 モデルの概要を示す。地盤を平面ひずみ要素、杭・基礎 部・上部構造をはり要素で離散化した2次元モデルとし た。平面ひずみ要素の奥行き幅は根入れ部の奥行き幅を 用いた。根入れ部の梁要素は、側面と杭頭部でのみ平面 ひずみ要素と節点共有し、底面では共有していない。解 析コードは DIANA-SD(2 次元)である。霞ヶ浦砂のパラ メータは文献 8)を参考にして決めた。

2-dimensional finite element model

3.2.3 地盤の液状化挙動の再現

図-12、図-13 に飽和砂層の過剰間隙水圧の時刻歴と同 時刻深度分布を、実験と解析を比較して示す。実験、解 析ともに、飽和砂層上部では 10 秒前後に、飽和砂層下 部では 20 秒前後に、水圧が初期有効上載圧に達して液 状化しており、地盤の液状化が上部から下部へと進行し ていることが分かる。

3.2.4 杭の応力と地盤反力

図-14 に杭頭曲げモーメント時刻歴を、実験と解析を 比較して示す。全時刻にわたって精度よく再現できてい る。図-14 の中で示した 2 時刻(A:14 秒、B:43 秒)につい て、杭の曲げモーメントの同時刻深度分布を示す(図-15)。 時刻 A は飽和砂層で液状化が進行中の状態、時刻 B は 全層液状化した状態である。地盤の上層から下層へ液状 化の進行に伴い、地中部の曲げモーメントのピークが下 方へシフトする現象が再現されている。

図-16 に曲げモーメントを材軸方向に 2 階微分した地 盤反力の同時刻深度分布を示す。液状化層と非液状化層 の境界付近をピークにした地盤反力の分布形状が再現さ れている。

3.3 被災したケーソン護岸のシミュレーション解析⁹⁾ 3.3.1 解析対象および被災状況

解析対象は、兵庫県南部地震で被災した六甲アイラン ド南側の大型重力式岸壁(水深-14m)である。水平変位約 4~5m、沈下約 1.5~2m、傾斜角約 4 度の大きな変形が 報告されている。図-17 に護岸の典型的な被災状況¹⁰⁾を 示す。

図-17 兵庫県南部地震における護岸の被災状況¹⁰⁾ Damage of quay wall in 1995 Hyogoken-nanbu earthquake

3.3.2 解析条件

入力地震動は、兵庫県南部地震におけるポートアイラ ンド-32m での観測記録の NS 成分(水平)と UD 成分(鉛 直)であり、水平・鉛直同時入力とした。

図-18 に解析モデルを示す。地盤は平面ひずみ要素と し、岡・八嶋モデルでモデル化した。このうち、沖積粘 土、裏込石および基礎捨石はダイレイタンシーを考慮し ないものとした。また、ケーソンは線形弾性モデルとし、 ケーソン底面と背面にはジョイント要素を設けて剥離は 考慮せず、滑動のみを考慮した。さらに、モデル側方に ついては、擬似自由地盤要素を設けてモデル側方での自 由地盤的な挙動を模擬し、排水条件については、ケーソン背面の地下水位面と海底面を排水境界とした。解析コードはLIQCA(2次元)である。

3.3.3 解析結果

表-1 に解析終了時におけるケーソン天端の変位量を 示す。ケーソン天端における変位量は、水平変位量 3.1m、沈下量 0.9m、傾斜角 1.4 度となり、実際の被災 事例と比較するといずれもやや小さい値であるが、オー ダーはほぼ整合しているといえる。

図-19 に解析終了時における過剰間隙水圧比分布図お よび変形図(倍率3倍)を示す。過剰間隙水圧比は、埋立 土のほぼ全域と置換砂の前方部で1に達しており、地盤 の剛性が非常に小さくなっていることが窺える。また、 ケーソンは前倒しに基礎捨石にめり込むように変形して おり、前置土が前方に盛り上がっている。この変形モー ドは、実際の被災事例で見られたものと概ね一致してい る(図-17参照)。

表-1 解析終了時におけるケーソン天端の変形量 Deformation of caisson crest at end of analysis

項目	解析結果	被災事例
水平変位量(m)	3.1	約 4~5
沈下量(m)	0.9	約 1.5~2
傾斜角(°)	1.4	約 4

「19 麻竹於」時にわりる迴釈间原水土比分布図・変形区 Au ratio distribution and deformation at end of analysis

4. 適用事例

4.1 締固め改良地盤における杭基礎の設計事例

4.1.1 はじめに

液状化対策として締固め砂杭工法を採用し、基礎をパ イルド・ラフトとした低層建物を対象に液状化解析を実 施し、杭の耐震安全性評価を行った。

4.1.2 検討概要

建物は、鉄骨造 3 階建て、平均荷重度約 60kN/m²の 比較的軽量な建物¹¹⁾である。一方、地盤は、表層 15m が液状化の可能性のある比較的緩い砂質土層、その下の 約 25m が軟弱な粘性土層となっており、N値 50 以上の 支持層は GL-44m の深さまで出現しない。そのため、長 尺支持杭形式に代えて、液状化対策を施した上で、パイ ルド・ラフト基礎形式を採用した。液状化対策工は、静 的締固め砂杭工法による地盤改良であり、直径 700mm、 長さ 12m の砂杭を 2.2m 間隔で打設するものとした。

図-20 に地盤の概 要と改良前後のN値 を示す。液状化対策 によりN値が改善さ れていることが分か る。なお、敷地の制 約により、対策工の 施工範囲は建物直下 のみとなった。また、 杭は直径 600mm の ソイルセメント杭で、 芯材として H 鋼を 用いている。

4.1.3 解析モデル

砂杭と杭間地盤で構成された改良地盤は複合地盤であ るため、本来3次元でモデル化するのが望ましいが、建 物-地盤連成モデルで、個々の砂杭をモデル化するのは 非実用的である。平均密度を用いて改良地盤を等価な一 様地盤に置換する考え方¹²に基づき、改良地盤-未改良 地盤-杭-建物系の2次元有効応力 FEM 解析を実施し、 改良地盤における杭の挙動を評価する。

解析ケースを図-21 に示す。液状化対策前(Case1)と対 策後(Case2 および Case3)を比較することにより、液状 化対策の効果を検討する。また、Case2 は上述したよう な建物直下のみ改良した場合であり、ここで検討対象と している建物の改良条件に相当する。Case3 は改良範囲 の幅を、改良深さの半分の距離だけ外側に拡大した場合 である。入力地震波は、告示波(レベル 2)を用いた。解 析 コードは DIANA-SD で ある。原地盤 (未改良地盤)お よび改良地盤の^{9m} 液状化強度の推 定には、文献 (Ca 13)を用いた。

4.1.4 解析結果 各ケースの建 物直下の地盤 (深さGL-6.5m) の過剰間隙水圧 の時刻歴を図-22 に示す。
22 に示す。
23 に示す。
24 にでは、未 改良のため水圧 は初期有効上載
25 圧にほぼ等しく なり液状化に達 しているのに対

し、改良を行った Case2 と Case3 では、水圧上昇が抑え られていることが分かる。なお、側方の未改良地盤は、 3 ケースとも同程度に液状化していることを確認してい る。

図-23 に杭1の杭頭部における曲げモーメントの時刻 歴を示す。Casel では、建物直下の地盤も液状化したこ とに起因して大きな曲げモーメントが発生しているのに 対し、改良地盤の液状化が抑えられた Case2 と Case3 で は小さな値に留まっている。図-24 に杭1と杭2の最大 曲げモーメントの深度方向分布を示す。それぞれ図中の 直線は降伏モーメント My を示している。いずれの杭で も、改良前(Casel)は杭頭部および地中部の曲げモーメ ントが M_yを大きく超え、降伏する結果であるのに対し、 改良後(Case2 および Case3)は M_y以下に留まっている。 液状化対策の効果で、地震時の水平動に対する杭の安全 性が確保されている。また、Case1 との差異を考慮する と、Case2 と 3 の差異はわずかであるため、建物直下の みの液状化対策でも、地震時の水平動に対する杭の安全 性確保に有効な場合があるといえる。

4.2 地中構造物の浮き上がりに関する適用事例¹⁴⁾

4.2.1 解析対象

液状化地盤中の地中埋設構造物(管路やマンホール等) においては浮き上がり現象が多数見られる。ここでは、 レベル2地震動で液状化する地盤における地中構造物の 浮き上がり現象に対して液状化解析を行った。検討対象 構造物は、幅10m、高さ6m、土被り4mの2連のRC ボックスカルバートであり、地盤は、N値5および13 の中砂層、粘土層、砂礫層、基盤からなり、地下水は GL-2mである。

以下では、兵庫県南部地震におけるポートアイランド

GL-32m での観測記録の NS 成分を与えたケースについ て紹介する。図-25 に入力地震動の加速度時刻歴を示す。

4.2.2 解析条件

図-26 に解析モデルを示す。地盤は平面ひずみ要素で モデル化し、構成則は岡・八嶋モデルを用いた。地中構 造物は梁要素でモデル化し、構成則は線形弾性モデルと した。解析コードは LIQCA(2 次元)である。

解析手順としては、施工過程を考慮した初期応力解析 を行った後、液状化解析を行った。初期応力解析では、 1)水平成層の原地盤作成、2)掘削、3)地中構造物構築、 4)覆水、の4ステップからなるステップ解析を行った。

2-dimensional finite element model

4.2.3 解析結果

図-27 に構造物下方の要素 A と構造物側方の要素 B の 過剰間隙水圧比(Δu/σ_{v0}')の時刻歴を、図-28 にボックス カルバート頂版(節点 C)の鉛直変位の時刻歴を示す。

また、図-29 に解析終了時における過剰間隙水圧比分 布図および変形図(倍率3倍)を示す。

Time histories of excess pore water pressure ratio

Time history of vertical displacement at top of box culvert

図-29 解析終了時における過剰間隙水圧比分布図・変形図 Au ratio distribution and deformation at end of analysis

これらの図から、地中構造物の浮き上がりが、過剰間 隙水圧増加、すなわち有効応力低下による剛性低下と剛 性低下した地盤が構造物下に回り込むことによって発生 していることが分かる。

5. まとめ

当社の保有している3次元および2次元の液状化解析 技術を用い、振動台実験や実際の被災事例を対象にした シミュレーション解析を行った。いずれのシミュレーシ ョンでも、過剰間隙水圧の上昇や比較的大きな変形を伴 った地盤の液状化挙動と、液状化時の構造物における断 面力や変形等の挙動を精度よく評価できることを確認し た。これにより、本解析技術を設計実務に適用すること の妥当性を示した。

また、本技術を、実際の構造物の設計・評価に適用し た事例を2つ示した。液状化対策の効果を考慮した杭基 礎の応力評価や、施工の影響を考慮した地中構造物の浮 き上がり評価が実施可能である。

今後とも本技術の精度向上と実務展開を図り、適用範 囲の拡大と、ノウハウの蓄積を進めていく。

謝辞

3.2 で示した大型振動台実験は、当社と、防災科研、 東工大、鹿島、竹中工務店、新日鉄、東京ソイルリサー チとが共同で実施したものである。関係者に謝意を表し ます。

参考文献

- 1) 例えば、吉見吉昭:砂地盤の液状化(第2章液状化のメカニ ズム), pp.5-18, 技報堂出版, 1991.
- 2) Zienkiewicz,O.C. and Shiomi,T.: Dynamic behaviour of saturated porous media ; The generalized Biot formulation and its numerical solution, International journal for numerical and analytical methods in geomechanics, Vol.8, pp.71-96, 1984.
- 3) Oka,F., Yashima,A., Shibata,T., Kato,M. and Uzuoka,R. : FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model, Applied Scientific Research, Vol.52, pp.209-245, 1994.
- 4) Oka,F., Yashima,A., Tateishi,A., Taguchi,Y. and Yamashita,S. : A cyclic elasto-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus, Geotechnique, Vol.49, No.5, pp.661-680, 1999.
- Cubrinovski, M. and Ishihara, K. : Modelling of Sand Behaviour Based on State Concept, Soils and Foundations, Vol.38, No.3, pp.115-127, 1998.
- 6) 立石章, 宇野浩樹: 3次元有効応力解析による杭基礎の遠 心場における液状化実験のシミュレーション, 大成建設技 術センター報, 第36号, pp.28-1-28-6, 2003.
- 7)田村修次,土屋富男,鈴木康嗣,藤井俊二,佐伯英一郎, 時松孝次:大型せん断土槽を用いた鋼管杭の液状化実験(その1実験概要),第35回地盤工学研究発表会発表論文集, Vol.2, pp.1907-1908,2000.
- 8) Cubrinovski, M., Ishihara, K. and Furukawazono, K. : Analysis of full-scale tests on piles in deposits subjected to liquefaction, Earthquake Geotechnical Engineering, Seco e Pinto (ed.), Balkema, Rotterdam, pp.567-572, 1999.
- 9) 立石章,名合牧人,古池章紀:設計用入力地震動を用いた ケーソン岸壁の地震時変形解析,土構造物の耐震設計に用 いるレベル2地震動を考えるシンポジウム,pp.81-88,地 盤工学会,1998.
- 10) 稲富隆昌,善功企,外山進一ほか:1995 年兵庫県南部地震 による港湾施設等被害報告,港湾技研資料, Vol.857, pp.14, 1997.
- 11)小林治男ほか:液状化対策工を併用したパイルド・ラフト 基礎の低層建物への適用,第 36 回地盤工学研究発表会, pp.1475-1476, 2001.
- 12)船原英樹ほか:締固め砂杭工法による液状化対策地盤の三次元有効応力解析,第36回地盤工学研究発表会,pp.2219-2220,2001.
- 13) 立石章,古池章紀,宇野浩樹:密度増大工法における強度 設定法の研究 側圧増加,杭間地盤の強度分布,改良杭強度 の考慮方法,第36回地盤工学研究発表会,pp.2215-2216, 2001.
- 14) 古池章紀,立石章,名合牧人:地中構造物の液状化を考慮 した動的相互作用解析と地震荷重に関する一考察,第24回 地震工学研究発表会, pp.741-744, 1996.