制振システム天井の開発

高木 政美*1・日比野 浩*1・成原 弘之*2・佐々木 晴夫*3・井上 和夫*4・出雲 洋治*5

Keywords: grid system ceiling, clean room, static loading test, shaking table test システム天井, クリーンルーム, 静加力試験, 振動台実験

1. はじめに

昨年、震度5を超える地震が多発し、生産施設や公共 施設などで天井が損傷・落下するなどの被害が報告され た。筆者らはクリーンルームのシステム天井が損傷を受 けた場合、清浄空間を復旧するのに多大な時間と金額が かかることに着目し、地震を受けてもクリーンルームと しての機能を保持することができる制振システム天井の 開発を目的として研究・開発を行った。研究・開発は、 まず開発の目標を定め、次に、天井部材の静的試験、解 析による制振システム天井の成立性の検討、振動台によ る実証試験の順に行なった。本報では、その結果につい て報告する。

2. 制振システム天井の概要

2.1 開発コンセプト

2.1.1 従来型システム天井の問題点

従来のシステム天井は直交するバーを吊ボルトで吊り 下げ、ブレースを適所に配置する方法で耐震性を確保し ていた。しかし、地震時には図-1に示すように吊部材お よびブレースに座屈や切断を生じ、天井や壁が損傷する 可能性があった。

2.1.2 開発目標

供用期間中に遭遇する可能性の高い震度 5 強~6 弱相 当の地震でクリーンルームに被害がなく、生産が継続で きることを開発目標とした。そのためには天井部材およ び天井部材に取り合う壁部材、設備機器に過大な荷重・ 変形が生じないこと(加速度 800cm/s²以下、変位 10cm

- *2 技術センター建築技術研究所建築構工法研究室
- *3 建築本部技術部建築技術部
- *4 設備本部設備部
- *5 設計本部構造グループ

以下)を設定目標とした。

対象とするクリーンルームは躯体チャンバー方式の FFU 空調方式とし、天井の質量は天井部材、FFU 等設 備機器を含めて 50kg/m² (クラス 100 相当)を想定した。

図-1 従来型システム天井の地震時の挙動(模式図) Behavior of usual grid system ceiling on earthquake excitation

2.2 制振システム天井の概要

開発した制振システム天井は靭性型支持方式とダンパ 一方式の2種類である。

2.2.1 靭性型支持方式

靭性型支持方式の概念を図-2 に示す。支持鋼材のねば り(靭性)によって振れ幅を制御する方式である。靭性 型支持部材の上端を鉄骨梁に剛接合し、下端は天井パネ ルに接合する。天井部材に地震力が作用したときの水平 力を靭性型支持部材が受け持つ。支持部材は弾塑性変形 することにより天井部材に作用する加速度と変位を制御 する。

2.2.2 ダンパー方式

ダンパー方式の概念を図-3 に示す。支持部材に固定し たオイルダンパーにより振れ幅を制御する方式である。 鉄骨梁に上端が剛接合された支持部材の下端と天井部材 との間にダンパーを直行する2方向に1対づつ取り付け る。天井部材に作用する加速度と変位とをダンパーが制 御する。

3. 靭性型システム天井の静加力試験

3.1 システム天井部材耐力試験

3.1.1 目的

クリーンルームで使用されるシステム天井部材に、靭 性型支持部材等から局所的に荷重が作用した場合の耐力 を評価する目的で静加力試験を行った。

3.1.2 供試体

供試体の形状・寸法を図-4 に示す。天井フレームを 3 ×5 のグリッドに組み、フレームの凸部断面の肩部に天井パネルを載せて供試体とした。

3.1.3 試験方法

試験方法を図-4 に示す。天井グリッドの4 隅を固定し、 中央の天井パネルに接合部材を設置して、PC 鋼棒に引 張力を加える方法で載荷した。水平方向に加速度 1G が 作用した場合を想定し、荷重の大きさは機器を含めた天 井の重量相当とした。載荷方向は長手と短手の2 方向と し、載荷荷重とグリッドの変位を測定した。

3.1.4 試験結果

荷重ごとの天井部材の変形分布を図-5に示す。

天井グリッドは、靭性型支持部材により局所的に作用 すると想定した荷重に対して、20mm 程度の変形を生じ るが、十分な耐力があることが確認できた。

図-5 システム天井部材の変形の分布 Deformation distribution of grid system ceiling

3.2 靭性型支持部材の静加力試験

3.2.1 目的

靭性型支持部材は弾塑性変形することでエネルギー を吸収する。鋼材の規格値ではなく実際の物性値に基づ いて設計する必要がある。ここでは靭性型支持部材とし て採用する鋼管の荷重-変形関係を評価することを目的 とした。

3.2.2 供試体

供試体は直径、肉厚の異なる3種類の鋼管 (STK400)とした。その種類を表-1に示す。

Specimen of ductile members							
供試体番号	直径φ(mm)	肉厚 t(mm)	長さL(mm)				
1	76	2.8	2100				
2	89	2.8	2100				
3	101	3.2	2100				

表-1 供試体一覧

3.2.3 試験方法

図-6 に試験方法の概要を示す。2000kN アムスラー試 験機により、靭性型支持部材の曲げ交番載荷試験を行っ た。正方向載荷と負方向載荷の交番は、供試体の上下を 人力で転向させることにより行った。

3.2.4 試験結果

試験に供した靭性型支持部材のうち直径が 89mm の鋼

管の荷重-変形関係を図-7 に示す。図より安定した履歴 特性を有していることが分かる。

図-7 靭性型支持部材の荷重 – 変形関係 (φ89) Load-deformation relationship of ductile member

3.3 静加力試験まとめ

天井部材に作用する想定荷重に対して天井部材が十分 な耐力があることが確認できた。また、靭性支持部材の 荷重-変形関係が把握でき、靱性型支持部材として機能 することが確認できた。

4. 動的解析による制振システムの選定

システム天井に過大な荷重・変形が生じない靭性型支 持部材およびオイルダンパー選定のために、実際の建物 に本システムを適用した場合を想定し、天井の地震時挙 動を動的解析により予測した。

4.1 解析モデル

4.1.1 想定建物

想定した建物は2階建て の生産施設で、1階と2階 がクリーンルームとなって おり、RFのコンクリート スラブと段差となったレベ ルにクリーンルームの屋根 を有している建物である。 建屋フレームは X 方向が

純ラーメン構造、Y 方向がブレース構造で、ベースシア -0.5 相当で降伏すると仮定する。システム天井は屋根 の架構から吊られている構造を想定している。

4.1.2 解析モデル

解析モデルを図-8 に示す。モデルは各床レベルに質点 を持ち、各階を非線形のせん断ばねでつないだモデルと し、天井は折板屋根から制振部材の剛性をもつせん断ば ねで吊られた質点としている。

4.1.3 入力地震動

入力地震動は El Centro 1940 NS、Taft 1952 EW、 Hachinohe 1968 NS を 25cm/s に基準化した地震波、およ び告示スペクトルを約 1.3 倍した告示波(以後それぞれ El Cen、Taft、八戸、告示と略記する)を使用した。地 表面加速度としては 164~255cm/s² であり、これらの地 震波は気象庁震度にすると震度 5 強の大きさとなる。

4.2 制振部材の履歴特性

4.2.1 靭性型支持方式

靭性型支持部材は平面的に 3.6mピッチに設置するこ ととし、天井質量はクリーン度クラス 100 程度の 50kg/ m²としている。図-9 に靭性型支持部材モデルを示す。靭 性型支持部材モデルは長さ L=1500mmの片持ち材の剛 性を有し、その降伏強度 Py で塑性化するバイリニアモ デルとした。降伏応力度 y は静的試験より鋼材 F 値の 約 1.5 倍の値とした。鋼管径は ϕ 76、 ϕ 89、 ϕ 101 の 3 種類とした。

4.2.2 ダンパー方式(ダブル配置、シングル配置) 図-10 に示すようにオイルダンパーは接合部材と天井 パネル材間に水平に設置する。履歴特性はオイルダン パーの規格値を基にしたバイリニアーの減衰力特性お よび接合部材の剛性でモデル化した。オイルダンパー の1箇所あたりの本数を2本の場合(以下、シングル 配置とする)と4本の場合(以下、ダブル配置とする) の両ケースについて検討を行った。

4.3 動的解析結果

4.3.1 靭性型支持方式

靭性型支持部材の解析結果を図-11 に示す。靭性型支 持部材が大きくなるに従い変形は小さくなるが、逆に加 速度は大きくなる。 φ 89 ではシステム天井を取付ける 構造躯体と天井パネルとの層間変形(以下、天井の変形 と記す)が 10cm 程度におさまり、そのときの天井加速 度は約 800cm/s²程度と予想される。

4.3.2 ダンパー方式(ダブル配置、シングル配置)

シングル配置の場合の解析結果を表-2 に示す。天井の 変形は約 10cm、天井加速度は約 600cm/s² 程度となって いる。ダブル配置の場合の変形は約 6cm、加速度は約 800cm/s²となった。

4.4 動的解析結果まとめ

変形(cm)

制振システム天井に用いる靭性型支持部材の選定、お

よびダンパー本数を確認するために動的応答解析を行い 検討した。天井の変形を約 10cm にするためには、 靭 性型支持方式では靭性型支持部材を ϕ 89 とすればよく、 ダンパー方式ではダンパーの数を接合部 1 個所あたり 2 本とすればよいことがわかった。

図-11 靭性型支持材方式の解析結果 Analytical results of ductile support system

表2	ダンパー方式解析結果	(シングル配置)

Analytical results of damper system (single type)

	X方向				Y方向			
	El Cen	Taft	八戸	告示	El Cen	Taft	八戸	告示
屋根-天井層間変形(cm)	10.4	6.2	7.5	7.7	6.7	5.7	3.1	3.7
屋根-天井層間変形角	1/14.4	1/24.2	1/20.0	1/19.5	1/22.4	1/26.3	1/48.4	1/40.5
天井 加速度(cm/s ²)	640	517	429	442	587	488	274	309
屋根 加速度(cm/s ²)	620	525	409	407	696	578	328	406
地表面 加速度(cm/s ²)	255	248	165	156	255	248	165	156

5. 振動台による性能確認試験

5.1 試験概要

制振部材の基本性能、耐震性能目標を満足できるかを 確認することを目的として実大のシステム天井試験体を 用いて振動台実験を実施した。

5.1.1 試験体概要

のために従来型システム天井についても一部実施した。

5.1.2 加振方法

加振には大成建設(株)所有の三軸振動台(寸法4m×4m、最大積載重量20ton、最大加速度1G)を用いた。

振動台の入力波として、4 章で述べた建屋モデルによ

る地震応答解析結果の 建屋屋根部分の応答加 速度波形を用いた。地 震動は El Cen、Taft、 八戸、告示の4種類と した。なお、固有振動 数を把握するためにホ ワイトノイズ加振も実 施した。

計測点配置を図-12 に示す。ひずみ型加速 度計により鉄骨フレー ム、吊り部材、天井パ ネル、振動台の加速度

を、レーザー式変位計により振動台と天井パネルの相対 変位を計測した。

5.2 試験結果

5.2.1 ホワイトノイズ加振

図-14 に靱性型支持方式とダンパー方式(ダブル配 置)のY方向加振時の伝達関数(天井パネル中央/振動 台)を示す。図より天井部分の固有振動数は 2Hz であ ることが分かる。15Hz のピークは鉄骨架台の固有振動 数である。靱性型支持方式は支持部材が降伏していない ため、ピーク振幅が大きいが、ダンパー方式はオイルダ ンパーにより大きな減衰が付加されているため振幅は小 さい。

5.2.2 地震応答波加振

最大応答加速度と最大応答変位のタイプ毎の比較を 図-15 に、1 方向加振のケースについて天井パネルの最 大応答値一覧を 4 章の解析結果と併せて表-3 に示す。 図中には八戸入力のみであるが従来型の結果も併記した。

靭性型支持方式の最大変位は El Cen 入力時で 10.8cm、 Taft 入力時で 10.5cm となったのを除いて目標変位 10cm 内に収まっている。最大加速度はほぼ 800cm/s² 以下で あった。ダンパー方式の最大変位はダブル配置で 6.0cm、 シングル配置で 12.3cm であった。1 方向加振ではダブ ル配置では全ケースが、シングル配置でも告示X加振を 除き、目標変位内に収まっている。最大加速度は概ねダ ブル配置で 600cm/s² 以下、シングル配置で 380cm/s² 以 下であり、靭性型支持方式より小さい。 従来型では、加振途中で吊りボルトにはめ込まれたブレース固定金具のU型溝部分が脱落したために応答加速 度は靱性型支持方式と同程度であったが、最大応答変位 は計測可能範囲 25cm を上回った。

実験結果と解析結果を比較すると、概ね両者は整合し ている。加振ケースによって差が現れたのは、ここでの 解析は実験結果のシミュレーション解析ではなく、天井 を取り付けるための鉄骨フレームを考慮していない(鉄 骨フレームの増幅を考慮していない)事が要因と考えら れる。

El Cen 加振時の靭性型支持方式とダンパー方式の荷重 一変位関係を図-16 に示す。靭性型支持方式の荷重一変 位関係は、2 章で示した部材単体の静加力試験で得られ たそれと同様の形状となっており、システム天井に組み 込まれた状態でも安定した性能を発揮していることが確 認できる。ダンパー方式は接合部材の剛性と粘性減衰が 組み合わさった菱形に近い安定した形状となっている。

5.3 振動台試験結果まとめ

靭性型支持方式、ダンパー方式の実験結果では一部の ケースを除き目標変位 10cm 内に収まっていた。目標変 位を上回るケースでも、実施適用の際は計画時に建物の 応答、天井の重量や制振部材の負担面積(天井単位面積 当たりの制振部材数)を考慮することで目標変位に収め ることが可能である。

6. まとめ

震度6弱程度の地震後もクリーンルームとしての機能 を保持することができる制振システム天井を開発するこ とを目的として、天井部材の静的試験、解析による制振 システム天井の成立性の検討を行った後、振動台試験に よりその性能を実証した。

その結果、開発した制振システム天井は地震に対して 損傷することなく目標変位に収まり、有効であることを 確認した。今後はクリーンルームを有する生産施設のシ ステム天井への展開を図っていく予定である。

表-3 最大応答値一覧 Maximum response

大	而	X 方向			Y 方向				
入	力波	ElCen	Taft	八戸	告示	ElCen	Taft	八戸	告示
靭性型支持方式									
加速	実験	679	809	724	753	728	678	713	694
度	解析	825	814	766	791	854	840	824	849
変位	実験	8.3	10.5	6.5	8.6	10.8	8.0	6.6	7.9
	解析	9.4	6.9	5.0	5.9	11.4	9.7	8.0	8.0
ダンパー方式 (ダブル配置)									
加速	実験	517	541	488	539	605	554	407	458
度	解析	723	615	471	535	841	732	391	470
変位	実験	6.0	5.3	4.6	5.8	5.3	4.7	3.0	3.3
	解析	6.6	4.3	5.0	5.0	5.5	4.9	2.6	3.2
ダンパー方式(シングル配置)									
加速	実験	309	383	307	341	345	330	271	277
度	解析	640	517	429	442	587	488	274	309
変位	実験	9.1	9.6	9.8	12.3	7.3	5.6	4.0	4.8
	解析	10.4	6.2	7.5	7.7	6.7	5.7	3.1	3.7

表中単位は,加速度: cm/s²,変位: cm である。

