3次元有効応力解析による杭模型の遠心場における 液状化実験のシミュレーション

立石 章・宇野 浩樹

Keywords: 3-dimensional effective stress analysis, liquefaction, pile foundation, centrifuge modelling test, simulation analysis 3次元有効応力解析,液状化,杭基礎,遠心模型実験,シミュレーション解析

1. はじめに

兵庫県南部地震による多数の被害を受けて耐震基準が 整備されたが、液状化に関係する構造物の安全性および 液状化対策の評価手法は十分整備されたとは言い難い。 これは、液状化地盤中の構造物の挙動は簡便な手法で評 価することが難しく、実験的手法または有効応力動的F EM解析によらざるをえないためである。

筆者等は、京都大学岡二三生教授、岐阜大学八嶋厚教 授により開発された、砂の繰返し弾塑性モデルを用いた 2次元・3次元有効応力動的FEM解析プログラムLI QCAの応用研究を行ってきたが、今回地盤の液状化現 象だけでなく構造物の非線形挙動も考慮できるよう新た な開発を行った。本論文では、開発したプログラムの有 効性を検証する目的で実施した、杭基礎の遠心模型振動 実験およびシミュレーション解析結果を報告する。

2. 遠心模型振動実験

遠心模型実験は、遠心加速度 40G 場において、杭基 礎模型を対象に行った。図-1 に実験模型および代表的 な計測器の配置を示す。

地盤材料は豊浦砂で、Dr=60%の上層(層厚 22cm) と Dr=90%の下層(層厚 10cm)から成る2層地盤とし た。模型地盤は、まずせん断土槽内に6層に分けて振動 締固めにより乾燥砂地盤を作製したのち、脱気槽内で 40cSt のシリコンオイルにより模型地盤表面まで飽和さ せた。

杭は、鋼管杭を模擬した鋼製パイプを用いた。鋼製パ イプは、ステンレス製と鉄製の2種類とし、断面諸元お よび材料特性を表-1 に、引張試験による応力~ひずみ

関係を図-2 に示す。ここに、ステンレス製パイプは降 伏強度が高く、杭を降伏させない実験ケースに用い、鉄 製パイプは降伏強度が低く、杭を降伏させる実験ケース に用いた。以下、それぞれを弾性杭、塑性化杭と呼ぶ。

杭模型は、杭間隔 6D で2×2の4本群杭とした。杭 の境界条件としては、杭頭は建屋模型と剛結し、杭下端 はせん断土槽に設置し、水平方向拘束、回転と引抜きは 自由となる構造とした。建屋模型は、ステンレス製とし、 40G 場における杭の軸応力が、一般的な建築物の鋼管杭 と同程度となるような重量を与えた。

諸元	単位	弾性杭	塑性化杭		
材質	-	ステンレス製	鉄製		
外径	mm	9.50	9.50		
肉厚	mm	0.21	0.25		
密度	t/m ³	7.85	7.85		
ヤング係数	N/mm ²	197600	201700		
降伏強度	N/mm ²	385	183		
降伏ひずみ	.10-6	1947	908		

表-1 杭模型の断面諸元および材料特性 Material property of model pipes

図-2 鋼管杭模型の応力~ひずみ関係 Relationship of stress and strain of model pipes

入力地震動は、レベル2地震動対応として、兵庫県南部地震におけるポートアイランド GL-83m での観測記録のEW成分(最大加速度3.03m/sec²)とした。

実験のケースは、地盤のみのケース、弾性杭を用いた 杭の応答が弾性範囲内にあるケース(以下弾性杭ケー ス)、塑性化杭を用いた杭が降伏ひずみをこえるケース (以下塑性化杭ケース)の3ケースである。

実験結果は、後述するシミュレーション解析結果とと もに 40G 場の遠心模型スケールで示す。

3. シミュレーション解析

3.1 解析方法

シミュレーション解析には、2次元・3次元有効応力 動的FEM解析プログラムLIQCAを用いた。

図-3 3次元有限要素モデル 3-dimensional finite element model

場の支配方程式は、土骨格の変形と間隙水の浸透の連 成を考慮できる2相混合体理論を用いて定式化している。 数値解析法としては、空間離散化は、土骨格の変位は微 小変形理論に基づいた有限要素法で、間隙水圧は有限差 分法で行い、時間離散化には Newmark のβ法を用いて いる¹⁾。

砂の構成則としては、Oka ら²⁾の繰返し弾塑性モデル を用いた。この構成則の特徴は、(1)非線形移動硬化則、 (2)せん断剛性の塑性せん断ひずみ依存性、(3)過圧密境 界曲面および一般化した非関連流動則、等である。

3.2 解析条件

3次元解析に用いた解析モデルを図-3 に示す。2次 元解析は、3次元解析と同じ要素分割を用いている。

地盤は、繰返し弾塑性モデルを用い、2次元解析で は平面ひずみ要素を、3次元解析では8節点ブリック要 素でモデル化した。地盤の物性値および繰返し弾塑性モ デルのパラメータを表-2 に示す。繰返し弾塑性モデル のパラメータは、非排水繰返しせん断試験による液状化 強度をシミュレーションすることにより設定した。シミ ュレーション結果を図-4 に示す。

杭は、2次元解析、3次元解析とも梁要素とし、ファ イバーモデルを用いた。ここに、弾性杭は弾性材料とし て引張り試験の初期勾配を与え、塑性化杭は図-2の倍 リニアモデルでモデル化した。

杭と地盤の接触面は、二重節点としてばねで結合した。 杭周面の水平方向は剛結し、せん断方向は摩擦強度を極 限とするバイリニアモデルの弾塑性ばねを、杭下端の鉛 直方向には引張りカットの非線形弾性ばねを挿入した。

力学的境界条件としては、両側面はせん断土槽を考慮 して等変位境界とし、底面は完全固定とした。透水の境 界条件としては、両側面および底面は不透水境界、地表 面は排水境界とした。

解析ケースとしては、2次元解析は3ケースすべてに

		豊浦砂 Dr=60%	豊浦砂 Dr=90%	
初期間隙比 e _o	0.772	0.659		
圧縮指数	0.0025	0.0004		
膨潤指数	0.00050	0.00008		
透水係数 k (m/sec)	3.24 × 10 ⁻⁵	1.51 × 10⁻⁵		
初期せん断係数比 G₀/	3290	1133		
変相角 m(°)	28.0	23.9		
破壊角 _f (°)	37.4	43.7		
	B ₀	9200	54000	
硬化関数中のパラメータ	B ₁	45	140	
	C _f	0.0	0.0	
Fading memory	C _d	2000	2000	
ダイレイタンシー係数	D ₀	0.70	0.12	
	n	2.2	4.0	
基準ひずみ	P	0.00180	0.00117	
	E	0.02000	0.03200	
1.2 _F ++++++++++++++++++++++++++++++++++++				

表−2	繰返し弾塑性モデルのパラメータ
	Parameters of cyclic elasto-plastic model

図-4 液状化強度のシミュレーション結果 Simulation results of liquefaction strength

対し実施し、3次元解析は塑性化杭ケースのみ実施した。

3.3 解析結果

塑性化杭のケースにおける実験結果と2次元・3次元 解析結果の比較を中心に以下に示す。地盤のみのケース は杭のない場合の応答特性の把握を、弾性杭ケースは塑 性化杭の応答の特徴の把握を目的として結果を示す。

3.3.1 過剰間隙水圧および水平加速度

地盤および建屋基礎の全体的な挙動を調べるため、側 方地盤の過剰間隙水圧時刻歴、および側方地盤と建屋の 水平加速度時刻歴を、地盤のみのケース、塑性化杭ケー スについて図-5~図-10に示す。以下に考察する。

 実験結果の過剰間隙水圧時刻歴について見ると(図 -5~図-7 赤線)、塑性化杭ケースにおける杭から離れ た側方地盤の過剰間隙水圧時刻歴は、地盤のみのケー スの同じ位置の応答とほぼ同じであり、Dr=60%の上 層は過剰間隙水圧比が 0.1 秒付近でほぼ 1.0 に達して 液状化し、Dr=90%の下層は 1.0 には達していないこ とがわかる。また、両ケースの比較より、杭の影響は 側方地盤に対しては小さいことがわかる。

- 2) 実験結果の水平加速度時刻歴について見ると(図-8 ~図-10 赤線)、側方地盤地表の応答は、塑性化杭ケース、地盤のみのケースともにほぼ同じであり、0.1 秒 付近から振幅が低下して長周期化しており、液状化に 達していることを裏づけている。一方、側方地盤層境 界の応答は、両ケースとも短周期成分の卓越した応答 となっており、液状化していないことを裏づけている。 塑性化杭ケースの建屋の応答は、上層が液状化に達する0.1 秒付近から応答が低下し長周期化している。
- 3) 解析結果の過剰間隙水圧時刻歴について見ると(図 -5~図-7 青線)、側方地盤上層では、塑性化杭ケース、 地盤のみのケースともに、解析結果は実験結果より若 干早いが 0.1 秒前後で液状化するという結果になって いる。詳しく見ると、塑性化杭ケースでは、液状化直 前に、2次元解析結果では大きな変動が発生している のに対し、3次元解析結果では変動は小さく、3次元 解析結果の方が地盤のみのケースの2次元解析結果あ るいは実験結果に近い挙動を示している。これは、2 次元解析結果の場合、杭の変形がすべて地盤の要素に 伝えられるため、杭から離れた側方地盤まで杭の影響 が及んでいることによるものと考えられる。3次元解 析ではこの問題がないため、実験結果により近い応答 が得られていると考えられる。
- 4) 解析結果の水平加速度応答時刻歴について見ると (図-8~図-10 青線)、側方地盤地表応答は、塑性化杭 の有無および解析次元に関係なく、実験結果と同様に 0.1 秒付近から振幅が低下し長周期化している。これ に対して、塑性化杭ケースの建屋の応答は、3次元解 析の方が2次元解析に比べて 0.1 秒以下の短周期成分 が少なく、実験結果に近い結果となっている。これは、 3次元解析の方がより実際に近い地盤のモデル化とな っているためと考えられる。

3.3.2 水平相対変位および杭の曲率

地盤および建屋・杭の変形を調べるため、土槽底面からの上層地盤および建屋の水平相対変位、および杭頭と 層境界位置での杭の曲率時刻歴を、弾性杭ケース、塑性 化杭ケースについて、図-12~図-17 に示す。さらに、塑 性化杭ケースについては、過剰間隙水圧上昇初期および 液状化後における、杭頭でピークの発生する2時刻の曲 率深度分布を図-18、図-19 に示す。以下に考察する。

 実験結果の水平相対変位時刻歴を見ると(図-12 ~図-14 赤線)、上層地盤、建屋ともに、弾性杭のケースと塑性化杭のケースはほぼ同じ応答を示しており、 上層が液状化に達する 0.1 秒付近から長周期化すると

ともに片側に残留する傾向を示しており、特に杭の違いによる差違は見られない。

2) 実験結果の曲率時刻歴を見ると(図-14~図-16赤線)、全体的には、建屋の変位時刻歴と同様な挙動を示しており、弾性杭、塑性化杭ともに、0.1秒付近から長周期化し、片側に残留する傾向を示している。詳細に見ると、杭頭では弾性杭の方が塑性化杭に比べて

残留値は小さい。両杭で曲率時刻歴の違いが小さかっ た原因は、今回の実験では、塑性化杭が震動により降 伏しているものの、剛性を有している第2勾配までの 範囲で挙動していたためと考えられる。

3) 解析結果の水平相対変位時刻歴および曲率時刻歴を 見ると(図-11~図-16 青線)、いずれの応答も杭種に 関係なく 0.1 秒付近から長周期化している点では実験

図-18 杭頭曲率ピーク発生同時刻分布 (塑性化杭ケース、液状化後) Curvature distribution when peak value at pile top occured (Yield pile case, after liquefaction)

結果と同様であるが、実験結果のように残留が発生し ていない。これは、実験による上層地盤の水平相対変 位に残留が見られることから、建屋の変位および杭の 曲率の残留も、地盤の残留変位によるものと考えられ るが、これが解析では模擬できていないためである。

塑性化杭ケースの2次元解析と3次元解析を比較す ると、建屋の水平相対変位、杭の曲率ともに、片側へ の残留を除けば3次元解析の方が実験結果に近い応答 が得られており、3次元解析の有効性が明らかである。 4) 曲率の同時刻深度分布を見ると(図-17、図-18)、過 剰間隙水圧の上昇初期では、実験結果、解析結果とも に、杭頭で降伏曲率をこえる最大値が発生し、上層内 で極大値が発生する分布となっている。これに対し、 液状化後は、杭頭だけでなく層境界でも降伏曲率をこ える大きな値が発生し、杭頭との間でほぼ直線的な分 布となっている。これは、過剰間隙水圧上昇前は、地 盤抵抗があるため、Changの方法による分布となって いるのに対し、液状化後は上層地盤の抵抗がほぼ0と なるためである。

4. 結論

- 遠心載荷装置を用いた鋼管杭模型の液状化実験を行い、Dr=60%の上層地盤が液状化に達し、液状化前および液状化後ともに鋼管杭模型が杭頭および層境界で 降伏するという実験結果が得られた。
- 2) 2次元・3次元有効応力動的FEM解析プログラム LIQCAによりシミュレーションを行い、Dr=60% の上層地盤における過剰間隙水圧の上昇、加速度応答 の振幅低下および長周期化がほぼ模擬できた。また、 建屋の変位および杭の曲率についても、実験結果にお ける片側に応答が残留していく現象は模擬できなかっ たものの、振幅は概ねシミュレーションできた。

2次元解析と3次元解析の結果を比較すると、3次 元解析の方が、建屋の変位、杭の曲率とも実験結果に 近い結果が得られ、3次元解析の有効性が明らかとな った。

3) 杭の曲率の同時刻深度分布から、液状化前は上層地 盤の抵抗があるときの分布が、液状化後は上層地盤の 抵抗が消失したときの分布が実験、解析ともに得られ、 解析結果は、降伏曲率をこえる非線形の領域について も実験結果をよく模擬していた。これより、杭の耐震 安全性の評価に、有効応力動的FEM解析が有効であ ることが明らかとなった。

参考文献

- 1) Oka,F., Yashima,A., Shibata T., Kato M. and Uzuoka R. : FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-pastic model, Applied Science Research, 52, pp.209-245, 1994.
- 2) Oka,F., Yashima,A., Tateishi,A., Taguchi,Y. and Yamashita,S. : A cyclic elasto-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus, *Geotechnique* 49, No.5, pp.661-680, 1999.