- 変動軸力を考慮した構造実験と実施適用例 -

安田 聡・川端一三・小室 努*1・征矢 克彦*1

Keywords : cast-in-place concrete pile, flexible connection of pile head, rotation of connection, high strength steel bar 場所打ちコンクリート杭,杭頭半剛接合,杭頭固定度,異形PC鋼棒

1. はじめに

従来、杭とパイルキャップの接合部は、杭主筋をパイ ルキャップに定着するなど剛接合を目指したものが主流 であり、杭基礎の耐震設計においても、杭頭の境界条件 を完全固定とするのが一般的であった。そのため、地震 時には杭頭部に大きな曲げモーメントが発生し、それが 杭のみならずパイルキャップや基礎梁の設計に対しても 支配的要因になっていた。

しかし、杭頭を完全固定とするよりも回転を許した方 が、地震時の杭頭モーメントは低減でき、基礎構造全体 の耐震性向上を図れるとともに、これを積極的に設計に 取り入れることによって、杭や基礎梁の合理化、および これにともなう掘削土量の削減など、大きなコストメ リットが得られる可能性が高い¹⁾。

そこで当社では、杭の主筋をパイルキャップに定着さ せず、杭頭部の回転剛性と曲げモーメントを制御可能に した杭頭半剛接合構法を考案し、これまでに実用化を目 的に各種構造実験を実施してきた。この杭頭半剛接合構 法における杭頭接合部は、図-1に示すように、杭頭部の 回転性能をさらに高めるため、杭頭部にテーパーを設け て錘台形状とした「杭頭テーパータイプ」パイルキャッ プ側に同様のテーパーを設けた「基礎テーパータイプ」、 テーパーを設けずフラット形状とした「フラットタイ プ」の3タイプがある。また、3タイプともに杭頭断面 中央部に芯鉄筋を配することで、杭に引張軸力が作用す る場合にも適用可能である。なお、本構法では杭の横補 強筋に高強度異形 PC 鋼棒のスパイラル鉄筋を採用し、 杭の変形能力を高めている²⁰。

既報³⁾では、この杭頭半剛接合構法の一定圧縮軸力下 における構造実験により、杭頭部に作用する曲げモーメ ントは低減され、杭頭部の損傷を軽微に抑えることがで

*1 設計本部 構造グループ(原)

きることを明らかにした。本報では、変動軸力(引張軸 力)および高圧縮軸力下における杭頭接合部の構造性能 を把握するために実施した構造実験と実施プロジェクト への本構法の適用例について報告する。

2. 実験計画

2.1 試験体

表-1に試験体一覧を、図-2に各試験体の杭頭形状を示 す。図-3に試験体の配筋図例を示す。試験体は長さ3m、 直径 φ500mmの場所打ちコンクリート杭である。

試験体数は6体で、それぞれ杭頭形状を変化させた。 No.1 ~ No.4 は、杭頭部の回転性能を高めるとともに杭 頭部の損傷低減を図った「杭頭テーパータイプ」(No.1、 No.2)および「基礎テーパータイプ」(No.3、No.4)であ る。杭軸部と杭頭接合面の断面積比は2:1とした。また、 これらの試験体は、杭に変動軸力(引張軸力)が生じる 場合や杭頭接合面のせん断伝達能力を高める場合を想定 した芯鉄筋を有する試験体である。芯鉄筋は杭頭中央部 に φ180mm の円形状に配した。

No.5、6は杭と基礎を接するのみとした芯鉄筋のない 試験体で、高圧縮軸力下における杭頭回転性能を把握す

	List of specimens					
試験体	杭形状	芯鉄筋	軸力 制御	軸力(kN)	軸応力	杭頭形状
No.1	杭軸径 500mm			1924 ~ -999	$\sigma_o = 10 \sim 0.65 N_y$	
No.2	接触面径 350mm	16-D13	変動 軸力	2886~ -1383 -1383:載荷2	$\sigma_o = 15 \sim$ -0.90 $_t N_y$ -0.90 $_t N_y$	杭頭テーパー
No.3	土肋 28-D13 (ng-1.8%)			1924 ~ -999	$\sigma_{o} = 10 \sim$ -0.65 $_{t}N_{y}$	基礎テーパー
No.4	横補強筋			2886 ~ -1383	$\sigma_o = 15 \sim 0.90 t_N^N v_y$	
No.5	U5.1-@27 (pw=0.3%)		_+	2886 192	σ_o =15 σ_o =1	杭頭テーパー 芯鉄筋なし
No.6	接触面径 500mm	-	— 一 車 力	962 1924 85	$\sigma_o = 5$ $\sigma_o = 10$ $\sigma_o = 0$	フラット 芯鉄筋なし
$\sigma_o: 軸力 / 杭軸部面積 (N/mm²)$						

表-1 試験体一覧

 $t^{N_{v}}$: 芯鉄筋の降伏耐力

る。No.5は「杭頭テーパータイプ」とした。No.6はテー パーを設けない「フラットタイプ」とし、杭主筋を基礎 側に 50mm のみ込ませた。

2.2 使用材料および製作方法

表-2に使用した鉄筋の機械的性質を、表-3に実験時の コンクリート強度を示す。いずれの試験体も主筋に SD390 を、横補強筋に高強度異形 PC 鋼棒 (SBPD1275/ 1420)のスパイラル筋を使用した。No.1~4に使用した 芯鉄筋はUSD685である。

試験体は、加力装置の都合上、杭体と基礎の位置関係 を逆にした状態で製作した。コンクリートの呼び強度 は、杭・基礎スタブともにFc30とした。試験体のコンク リート打設は縦打とし、基礎スタブ 杭体の2段階に分 けて行った。打ち継ぎ部は木ゴテ仕上げとした。

2.3 加力方法

図-4に加力装置を示す。杭体と基礎の位置関係を逆に した状態で試験体をセットし、試験体杭最上部を杭先端 とした。加力は、杭先端(反力スタブ)をピン支持し、杭 長中間部(加力ブロック)にせん断力を作用させる正負 繰返し載荷とした。試験体の実験時応力状態は、1次不 静定の曲げモーメント分布となる。加力ブロック中心が

Figure of specimen

表-2 鉄筋の機械的性質

Mechanical properties of rebar

呼び径	鋼種	降伏点 (N/mm ²)	引張強さ (N/mm ²)	伸び (%)	使用部位
D13	SD390	416	615	16.1	主筋
D15	USD685	756	960	11.1	芯鉄筋
U5.1	SBPD1275 /1420	1465	1470	9.6	横補強筋

表-3 コンクリート強度 Material properties of concrete

試験体		No.1	No.2	No.3	No.4	No.5	No.6
圧縮強度	基礎	38.4	36.7	36.9	39.0	39.1	39.7
(N/mm^2)	杭	43.1	39.1	39.8	33.6	36.5	42.7

基礎スタブ上面から3D(D: 杭径)となる載荷1を基本 とし、No.2のみ引張軸力下における杭頭部のせん断性状 を把握する目的で、加力ブロック中心が基礎スタブ上面 から1.5Dとなる載荷2を載荷1に引き続き行った。

加力は、加力ブロック下部の杭に対する部材角R,(加 カブロックと基礎スタブの水平変位差を高さで除した 値)で制御した。軸力は、杭先端の反力ブロック上部に 鉛直に取り付けた2台の複動ジャッキにより与えた。 No.1~4には、図-5に示すように、載荷荷重Pに対応し た変動軸力Nを与え、No.5、6には、表-1に示す一定圧 縮軸力を与えた。

なお、実験結果における軸力のP-△効果は、反力スタ ブの回転量から軸力用ジャッキ下側ピン位置の水平移動 量を算出し、この水平移動量と軸力用ジャッキの傾斜を 考慮して補正した。

実験結果 3.

3.1 荷重 - 変形関係および破壊性状

図-6に杭頭部に作用するせん断力 Q_1 - 部材角 R_1 関係 を示す。いずれの試験体も、R₁=1/30に至っても耐力は低

大成建設技術センター報 第36号(2003)

下せず、曲げ降伏型の良好な変形性能を示した。

写真-1に最終破壊状況を示す。写真には、比較のため に杭主筋を基礎に定着した従来型の試験体もあわせて示 している。従来型の試験体は、杭頭部に曲げ圧壊による 被りコンクリートの剥落が生じ、典型的な曲げ破壊型の 性状を示しているのに対し、杭主筋を基礎に定着しない ことで杭頭部に生じる曲げモーメントの低減を図ってい る本構法では、杭頭部に曲げひび割れは発生しておら ず、損傷は極めて軽微であったことがわかる。

変動軸力を与えたNo.1~4のひび割れなどの諸現象発

生順序は同様の傾向を示した。 R_1 =1/400の引張軸力時に 引張ひび割れが杭全体に発生し、 R_1 =1/200の圧縮軸力時 には加力ブロック近傍で曲げひび割れが発生した。杭頭 部においては、 R_1 =1/100の圧縮軸力時にせん断ひび割れ が発生したが、ひび割れ幅は最大 0.4mm(荷重除荷時 0.1mm以下)程度と軽微であった。変動軸力範囲が大き いNo.2、4は、No.1、3に比べてこのせん断ひび割れは材 軸方向に進展していた。芯鉄筋の引張降伏は、-0.65 N_y の 引張軸力時: R_1 =1/250付近で、-0.90 N_y の引張軸力時: R_1 =1/ 350付近で降伏した(N_y :芯鉄筋の降伏点)。杭頭テーパー タイプと基礎テーパータイプの相違による損傷状況の違 いは見られなかった。また、No.2では載荷2(引張軸力 の単調載荷)を行い、杭体(杭頭側)へのせん断力の入 力を大きくしたが、杭頭部の横補強筋は降伏しておら

Shear force - drift angle relations

(a) 従来型(杭頭剛接)

(c) No.3

最終破壊状況 写真-1

Final failure pattern

ず、また、すべりも発生していない。

杭主筋を基礎に 50mm のみ込ませた No.6 は、R₁=1/200 に基礎スタブ表面の杭頭部周囲100mm、深さ10mm程度 のコンクリートが剥離したが、損傷は軽微であることか らQ₁ - R₁関係にはこの影響は見られず、良好な耐力・変 形性状を示した。また、R,=1/50においても杭頭部にひび 割れは発生しなかった。

3.2 杭頭部の曲げモーメント - 回転角関係

図 -7 に杭頭部の曲げモーメント M_1 - 回転角 θ 関係を 示す。杭頭回転角θは、図-3に示すように杭対面2点の 鉛直変位の差を測定スパンで除して求めた。変動軸力を

与えたNo.1~4の杭頭部は、引張軸力時(負加力)に杭 頭の回転剛性が大きく低下し、負担曲げモーメントが低 下することがわかる。負加力時の除荷経路で杭頭モーメ ントが増加しているが、これは軸力を作用せん断力に応 じて制御しているため、荷重除荷時に引張から圧縮軸力 に移行し、杭頭部の曲げ耐力が増加したためである。 No.1とNo.3 およびNo.2とNo.4の*M*₁ - θ関係における 差はなく、杭頭テーパー・基礎テーパータイプの相違に よる影響は見られない。

基礎と接触するのみのNo.6は、履歴ループ面積を持た ない非線形弾性の履歴性状を示し、その除荷経路は載荷

Moment of pile head joint - rotation relations

経路をもどる傾向を示した。No.5は基礎と接触するのみ の試験体であるが、No.6と比較して履歴ループは若干面 積を持っている。これは、杭頭テーパーを有するNo.5の 杭頭接触面に作用する圧縮応力が高いため、基礎および 杭の接触面のコンクリートの塑性変形が大きくなるため と考えられる。加力終了後に杭頭接触面の基礎スタブへ のめり込み(1mm 程度)が観察された。

3.3 杭頭接合部のせん断伝達機構

3.3.1 芯鉄筋のダウエル抵抗によるせん断伝達

図 -8(a) に変動軸力を与えた No.2 の杭頭部のせん断力 Q_1 - 杭頭水平変位 δ_c 関係を示す。これより、圧縮軸力側 (正加力)はずれをともなわない摩擦伝達により杭頭部 のせん断力を伝達し、引張軸力側(負加力)は多少のず れをともなう芯鉄筋のダウエル抵抗によりせん断力を伝 達しているものと思われる。

載荷2では、引張軸力を芯鉄筋の引張降伏耐力の90% まで導入して回転角 *θ*=1/20まで単調載荷を行ったが、荷 重の低下をともなうようなすべりは発生しなかった。 表 -4 に下記に示す (1) 式⁴⁾ から求まる芯鉄筋のダウエル

表-4	芯鉄筋のダウエル耐力
	Shear force with dowel reinforcement

	せん断力	ダウエ	ダウエル耐力				
試験体	$_{e}Q_{\max}$	$_{c}Q_{d1}$	$_{c}Q_{d2}$	$\frac{e\mathcal{Q}_{\text{max}}}{Q}$			
	(kN)	(kN)	(kN)	$c \ge d1$			
No.2	366以上	251	575	1.46			

載荷2の実験結果(引張軸力時)

	Since displacement of pile head joint					
討睎休	軸力	せん断力	回転角	Q_1	変位	すべりの
市以词火 144	N (kN)	Q_1 (kN)	θ (rad.)	\overline{N}	(mm)	有無
No.5	192	160	0.015	0.84	0.13	すべり発生
No.6	85	218以上	0.029	2.56	4.99	すべりなし

表 -5 杭頭接合部のすべり Slide displacement of pile head joint

杭頭部の基礎スタブに対する水平ずれ変位を示す

耐力_{$cQ_d}と杭頭部に作用する最大せん断力実験値との比較を示す。表には、芯鉄筋の降伏点を引張応力分だけ低減した_{<math>cQ_{d1}}と、芯鉄筋の降伏点をそのまま使用した_{<math>cQ_{d2}}$ $(<math>\alpha$ =0)の2通りを示している。載荷2は最大せん断力に達する前に実験を終了しているが、実験値は_{$cQ_{d1}}に対して1.4倍以上の余裕度があるのが確認された。</sub>$ </sub></sub></sub>

$${}_{c}Q_{d} = 1.65 \cdot a_{dowel} \cdot n_{D} \cdot \sqrt{\sigma_{B} \cdot \sigma_{y} \cdot (1 - \alpha^{2})}$$
(1)

ここで、 a_{dowel} : 芯鉄筋 1 本の断面積 (mm²)、 n_D : 芯鉄筋の本数、 σ_B : コンクリート強度 (N/mm²)、 σ_y : 芯鉄筋の降伏点 (N/mm²)、 α : = σ_s/σ_y 1、 σ_s : 軸方向力による芯鉄筋の引張応力度 (N/mm²)

3.3.2 杭頭部コンクリートの摩擦伝達

杭と基礎が接触のみで接合されている場合、杭頭部の せん断力は接触面圧縮力に依存した摩擦により伝達され る。図 -8(b)、(c) に No.5、6の Q_1 - δ_G 関係を、表 -5 に杭 頭接合部のすべり発生時の状況を示す。杭頭テーパータ イプの No.5 において、軸応力度を低くした載荷($\sigma_{o}=$ 0.5N/mm²)ですべりが発生し、荷重が低下した。すべり 発生時の摩擦係数(Q_1/N)は0.84 であった。

杭主筋を基礎に50mmだけのみ込ませたフラットタイ プのNo.6において、低い軸応力度(σ_a =0.5N/mm²)でせ ん断力を増加させると、杭頭部には5mm程度の水平変位 が生じたが、荷重の低下をともなうすべりは発生してい ない。これより、杭主筋を基礎に少しのみ込ませること でせん断伝達をより確実なものにすることができると言 える。

3.4 杭頭固定度

表-6に各試験体の杭頭固定度を示す。ここで、杭頭固 定度とは杭頭モーメント実験値*M*₁を杭頭を完全固定と 仮定した際に杭頭に発生するモーメント理論値*M*_cで除 した値である。この杭頭固定度の指標は、弾性理論値*M*_c を基準としているため、杭頭部の回転剛性と曲げモーメ ントの非線形性を活用する本構法については、実験値と

Shear force - slide displacement of pile head relations

の単純な比較はできない。そのため表には、杭軸部がほ ぼ弾性範囲の R_1 =1/400および1/200時の正加力(圧縮軸 力)について示している。No.1~5の杭頭固定度は0.5~ 0.6程度でありテーパータイプのモーメント低減効果が 伺われる。フラットタイプのNo.6は R_1 =1/400では杭頭 接合面が全面圧縮のため固定度は0.81と高いが、杭頭接 合面の引張縁が離間するに従い R_1 =1/200では0.66に減少 しているのが確認された。

本構法の設計では、後述する実施適用例のように、非 線形性を示す杭頭モーメント - 回転角関係を杭頭回転ば ねとしてモデル化し、これを設計に用いることで杭頭固 定度の低下と回転性能を実質的に評価している。

3.5 初期剛性および最大耐力

表-7に杭頭部の曲げモーメント*M*₁ - 回転角θ関係に おける初期剛性および最大曲げ耐力の実験値と計算値と の比較を示す。初期剛性および最大曲げ耐力の計算値 は、文献5)に提案されている手法により算出した。この 手法は、図-9に示すように、コンクリート接触面の応力 重心位置における基礎へのめり込み量(θ)と杭頭部の変 形(θ)を算出し、回転角を求めるもので、また、その時々 の接触面積に応じた支圧によるコンクリートの強度上昇 を考慮して曲げモーメントを求めている。基礎へのめり 込み量およびコンクリートの支圧効果を適切に評価する ことにより、初期剛性および最大耐力実験値を精度良く 推定できていると言える。

4. 実施適用

本構法は、2003年3月時点で15件(その内7件は超高 層建物)のプロジェクトに適用されている。ここでは、東 京都中央区に建設されたマンションへの適用例について

図 -10 外観パース Perspective of the building

表 -6 杭頭固定度 Rotation of pile head joint

試験体		No.1	No.2	No.3	No.4	No.5	No.6
田宁庙	$R_1 = 1/400$	0.51	0.56	0.59	0.62	0.63	0.81
凹に反	$R_1 = 1/200$	0.54	0.58	0.56	0.62	0.61	0.66
正加力(圧縮軸力時)の固定度を示す							

表-7 初期剛性および最大耐力

Initial	stiffness	and	maximum	strengtl	h
---------	-----------	-----	---------	----------	---

試験体		No.1	No.2	No.3	No.4	No.5	No.6
初期剛性	実験値	113	69	99	91	88	207
$(MN \cdot m)$	計算値	101	98	104	99	88	251
実験値 / 計算値		1.12	0.71	0.95	0.92	1.00	0.83
最大耐力	実験値	341	400	361	405	431	460
(kN• m)	計算値	345	375	339	351	278	499
実験値 / 計算値		0.99	1.07	1.06	1.16	1.55	0.92

紹介する。図-10に建物外観パースを、表-8に建物概要 を示す。この建物は地上12階、地下1階の鉄筋コンクリー ト造で、横補強筋に高強度異形 PC 鋼棒を使用した場所 打ちコンクリート拡底杭を採用し、杭頭とパイルキャッ プとの接合部に本構法を採用した。

図 -11 に杭伏図を示す。軸力変動の小さい中杭にフ ラットタイプを、軸力変動が大きい側杭に杭頭テーパー タイプ(芯鉄筋あり)を採用した。図 -12 に地盤状況を

表-8 建物概要

	Outline of the building
用途	共同住宅
建設地	東京都中央区
主要構造	鉄筋コンクリート造
階数	地下1階,地上12階
最高高さ	36.77 m
延床面積	6462 m ²
基礎形式	場所打ちコンクリート拡底杭(アースドリル工法)
	フラットタイプ(中杭): 1600(2500)
	テーパータイプ(側杭): 1300(1800)~ 1400(2000)
	()内数値は拡底径を示す
基礎底	GL-5.3 m
杭先端	GL-35.0 m

<u>大成建設技術センター報 第36号(2003)</u>

示す。基礎底はGL-5.3mであり、基礎底以深約20mの地盤は、N値の小さい沖積層が続く軟弱地盤である。杭支持層は、GL-35mのN値50以上の砂礫層とした。

4.1 構造設計

杭の地震時の応力は、上部建物の地震応答による慣性 力と地震時の地盤変形を考慮した静的非線形解析を用い た。図-13に解析モデルを示す。基礎は剛と仮定し、杭 体は曲げ変形およびせん断変形を考慮した線材に置換 し、杭と基礎の接合部に杭頭回転ばねを設けている。図-14に杭頭モーメント - 回転角関係の実験結果と杭頭回転 ばねの解析値の比較を示す。杭頭回転ばねの解析値は文 献5)の手法により求め、これをトリリニアに置換したも のを静的非線形解析に使用した。地盤と杭は、建築基礎 構造設計指針⁶⁰の方法により求まる地盤水平ばねでつな ぎ、地盤側の節点に強制変位を与えた。

図-15 に極めて希に起こる地震に対する解析結果の最 大曲げモーメントと最大せん断力を、杭頭固定とした場 合のものと比較して示す。杭頭接合部を固定した場合に 比べ、杭頭部に生じる曲げモーメントが35~65%程度 に低下しており、本構法の有効性が確認された。杭頭部 に生じるせん断力は杭頭接合部を固定した場合と大きな 差違は見られない。

4.2 施工

掘削方法および杭頭部以外の杭体のコンクリート打設 などの施工方法は、従来の場所打ちコンクリート杭と同 様である。写真-2(a)に鉄筋籠の吊り込み状況を示す。芯 鉄筋を用いる場合、芯鉄筋は外周主筋の環状保持材に固 定した芯鉄筋支持材(プレート・鉄筋など)により位置 を確保し、外周主筋と芯鉄筋を一体として建込を行っ

(a) 鉄筋籠の吊り込み

(c) 杭頭部の仕上がり

(b) 杭頭型枠設置状況 写真 -2 施工状況

た。なお、芯鉄筋は円形配置とし、その直径はトレミー 管が挿入できる最小径とした。

杭頭テーパータイプでは、杭頭部に高強度コンクリート(Fc48)を使用し、精度良く錘台形状のテーパーに成型するため、杭頭部のコンクリート打設は杭体の打設後別途気中にて行った。杭頭余盛コンクリートのはつり処理を行った後、写真-2(b)に示すように、杭頭部にテーパー成型用の型枠を設置した。型枠の天端には緩衝材(スタイロフォーム)を錘台形状に成形したものを固定している。写真-2(c)に杭頭部の仕上がり状況を示す。

この建物では、本構法を採用したことにより、従来に 比べて杭径は300mm、基礎梁せいは400mm 縮小し、掘 削土量の削減とともにコスト低減に大きく寄与してい る。また、本構法は杭主筋をパイルキャップに定着して いないため、杭頭余盛コンクリートのはつり作業やパイ ルキャップおよび基礎梁の配筋作業が従来よりも容易で あった。

5. おわりに

紹介した杭頭半剛接合構法は、杭頭部の回転剛性と曲 げモーメントを積極的に制御することで、コスト低減と 施工の合理化をともなって杭・基礎構造の耐震性能を高 めることを目的として考案・開発した構法である。本構 法の構造性能を把握するために実施した構造実験によ り、杭頭部に作用する曲げモーメントは低減され、杭頭 部の損傷を軽微に抑えることができることが明らかに なった。本構法は、これらの結果を設計施工指針として まとめ、(財)日本建築センターの「杭頭接合工法評定」 (BCJ評定-FD0071-01)を取得している。また、多くの 超高層プロジェクトで個別の大臣認定を取得して実施し ており、あらゆる規模・用途の構造物の場所打ちコンク リート杭に適用可能である。

損傷のない高性能の杭・基礎構造をコスト低減をとも なって実現する本構法を、杭・基礎の標準構法として、今 後、拡く普及展開を図っていきたい。

参考文献

- 1) 是永健好ほか: 異形 PC 鋼棒で横補強した場所打ち RC 杭の 大型模型実験,コンクリート工学年次論文報告集, Vol.21, No.3, pp.475-480, 1999
- 2) 川端一三ほか:高性能場所打ちコンクリート杭の開発,コンクリート工学, Vol.38, No.7, pp.42-45, 2000.7
- 3) 安田聡ほか: 主筋を基礎に定着しない場所打ちコンクリー ト杭の構造性能,大成建設技術センター報, No.35, 2002
- 4) 日本建築学会:現場打ち同等型プレキャスト鉄筋コンク リート構造設計指針(案)・同解説,2002
- 5) 今井和正ほか: めり込みを考慮したRC部材端部の回転変形 解析法,日本建築学会構造系論文集,第562号,pp.99-106, 2002.12
- 6) 日本建築学会:建築基礎構造設計指針,2001