砂礫とセメントの自重落下による混合作用の評価と そのシミュレーション

大友 健・伊藤一教・平川勝彦*1・楠見正之*2・道場信昌*2・岡谷 豊*1

Keywords: CSG (cemented sand and gravel), mixing, gravity force, DEM, impacting momentum, cementation soil CSG, 混合, 重力, DEM, 衝撃運動量, セメント添加土

1. はじめに

台形CSG(セメント砂礫混合物:<u>C</u>emented <u>S</u>and and <u>G</u>ravel)ダムは「材料の合理化」に着目した新しいダム 形式である¹⁾.従来のダム構造と比較して,ダムサイト 周辺で得られる材料を有効に活用することができ,また 原石山・骨材製造設備の省略によるコスト縮減と環境保 全を可能とされるものである.このCSGの製造では, 従来からバックホウなどによる撹拌混合が行なわれてき た²⁾が,大規模な台形CSGダムの施工の要求に適応 して,製造効率と品質安定性の向上を目的とした新しい CSGの製造技術が要求されるようになってきている ^{3),4)}.

本研究は,砂礫とセメントの自重落下による混合を模 擬する模型装置を利用した実験により,自重落下混合に より得られるCSGの強度とそのばらつきを測定するこ とで,砂礫とセメントの自重落下混合機構と,これに影 響を及ぼす落下混合時の障害物の影響を評価したもので ある.この結果から,自重落下混合の効率を物体衝突運 動量により評価する手法を提案した.さらにDEM(個 別要素法)によって,自重落下混合時の粒子間挙動をシ ミュレーションする数値的解析手法の可能性を検討した.

2. 自重落下模擬装置による混合の評価方法

2.1 使用材料と配合

砂礫には最大寸法を 80mm とした忠別川産の川床砂 礫を使用した.砂礫材料の粒度分布を図-1 に示す.砂 礫粒子密度は 2.46g/cm³ である.単位水量が 125kg/m³ と なるように砂礫材料の含水率をあらかじめ調整(含水比 で 10.0%)し、これに結合材として普通ポルトランドセ メント 60kg/m³を外割りで添加した.

*1 札幌支店土木部

2.2 試験装置と試験方法

CSGの混合には、図-2 に示す 7 種類の障害物を設 置した自重落下混合装置を使用した.板状障害物は 4 種 類であり、板を互い違いに配置した乙型配置 2 種類(障 害板数:7 および 14)とらせん状配置(障害板数:8), また漏斗配置(障害板数:5 と設定)である.棒状障害 物は 3 種類であり、棒を平行に配置したものと格子状に 配置したもの(2 種類)である.装置の側部 2 か所には 高周波振動機(出力:50W,振動数:50~120Hz,遠心 力:0.25~1.41kN)を各々設置した.

装置の上部に設置したベルトコンベヤのベルト上に砂 礫材料(30 リットル)を平滑に敷きならしその上にセメン トを帯状にのせたのちコンベヤを始動させることで連続 投入を行なった.この時,型枠振動機は常時作動させた. 材料の投入に要した時間は4.0秒である.なお,落下時 間を測定するときには、ベルトコンベヤの初動から全材 料が装置を通過し終わる時間までを測定し、それから投 入時間4.0秒を除した時間を落下時間としている.

混合後の試料のうち骨材径 40mm 以下のものをウエ ットスクリーニングによりふるい取り, φ150×300mm 供試体 3 本に成型した.成型には外部振動機を使用し, 湿潤密度が 2.0g/cm³程度(Gmax80mm 換算で 2.14g/cm³ 程度に相当する)となるように締め固めた.供試体は材 齢7日まで20℃で封緘養生し圧縮強度試験に供した.

自重落下混合の効果を一般の練混ぜと比較することを

図-1 砂礫材料の粒度分布 Grading of sand and gravel

^{*2} 土木本部土木技術部

目的とした実験では,図 -3 に示す自重落下式の 混合と, 傾胴型の重力式 ミキサ,パン型の強制練 り式ミキサによる練混ぜ とを比較した. 練混ぜに 使用したミキサの仕様を 表-1 に示す. 傾胴型重 力式ミキサ,パン型強制 練り式ミキサでは、 ミキ サ内に砂礫材料(30 リット ル)を投入しセメントを その上に一括にのせてか ら所定の時間練り混ぜて から排出した. 排出後の 取扱いは自重落下製造時と同様である.

図-2 自重落下混合模擬装置における障害種類 Mixing apparatuses utilized gravity action with the different obstacles

3. 自重落下混合性能の評価

3.1 自重落下時の振動の有無の影響

図-4 には、自重落下時の加振が落下時間、 CSGの圧縮強度とそのばらつき状態(3本の 供試体の強度の最大値と最小値の差) に及ぼす 影響を示した. 落下中に振動を与えることによ って、 圧縮強度は増大し強度のばらつきは著し く小さくなった. 落下時の状態をみると、振動 の無い場合は投入した材料が障害板の上に付着 して残ってしまう状況であった. 落下に要する

表-1	ミキサの仕様
	Specification of mixer

傾眼則重力 ()
傾腳空里刀 公称谷里:35997%, 取入内性:000000, 回転数:27.
式ミキサ r.p.m.(ミキサ内有効落下高さ:0.4m/1回転)
パン型 公称容量:50リットル,練混パドル数:3枚,最大内径
強制練り式 700mm, 回転数:50.0r.p.m. (周速:112.5cm/sec
ミキサ (直径43cmの運動)を仮定)

Influence of vibration

図-3 ミキサによる練混ぜのモデル化 Modeling of mixing on mixer

時間が振動の無い場合のほうが小さかったことにはこれ が影響しているのではないかとも思われる. 落下状態の 再現性の確保と強度評価のばらつきを除く観点から,以 下行なった障害物の相違の実験に際しては,全ケースに おいて加振しながら落下させるようにした.

3.2 障害物の相違による圧縮強度と落下時間の変化

図-5 には、自重落下混合時の障害の種類の相違がC SGの圧縮強度とそのばらつき状態に及ぼす影響を示す. 混合装置内での自重落下を繰り返すことによって圧縮強 度が増大し、そのばらつきは小さくなるが、障害の種類 によって得られる圧縮強度は異なった.

棒状障害に比べ板状障害の混合効率が高い (圧縮強度が大きく供試体間の強度差が小さい)

こと、Z型(7 枚)の板配置の混合効率が漏斗型あ るいはらせん型の板配置よりも高いことが分かる. 同じZ型でも 14 枚配置の場合には圧縮強度は小 さくなった.自重落下に要する時間は、漏斗型、 棒状障害<Z型(7 枚),らせん型<Z型(14 枚)のよ うに変化した.

3.3 障害物への衝突作用の考慮方法

砂礫材料を装置内で落下させた場合,障害物に 接触させなければ混合効果が小さいであろうことは自明 である.障害物に接触する機会の多さやその衝突角度ま た衝突速度によって,砂礫混合物の受けるエネルギーが 変化してくるものと想定された.そこで,図-6 に示す 自重落下時の衝突モデルを設定し,式(1)によって,物 体質量と衝突速度の積で表される衝突運動量を算定した. ここで,障害物への衝突角度の影響を sin 項で,障害物 に衝突しないで通過する材料の影響を衝突効率係数によ って表わした.各々の障害に対する自重落下の衝突運動 量の算定結果を表-2 に示す.漏斗型障害の場合,1 組の 漏斗部の開口率は20%,棒状障害では,いずれの棒配

図-7 衝突運動量と圧縮強度の 関係(板状障害) Concern between impacting momentum with compressive strength

図-6 衝突運動のモデル化方法 Model of impacting movement

表-2	単位質量当たりの衝突運動量の算定結果
	Calculation results of impacting momentum by unit mass

障害種類	衝突(落下)速度(m/s)				積算衝突回数			衝突 角度	効率	衝突運動量 (kg・m/s/kg)		
落下回数	1回	2回	3回	平均	1回	2回	3回	係数	DESC	1回	2回	3回
Z型(7枚)	0. 28	0. 21	0.26	0. 25	7	14	21	0.86	1.00	1.67	2. 47	4.75
Z型(14枚)	0.10	0.10	0. 09	0.10	14	28	42	0.95	1.00	1. 39	2. 56	3.74
らせん型	0.19	0. 23	0.20	0. 21	8	16	24	0.95	1.00	1.43	3. 51	4.66
漏斗型	0.88	0.60	0.62	0.70	5	10	15	0.86	0.80	3.04	4.13	6.36
棒状平行	0.75	-	0.54	0.64	6.5	-	19.5	1.00	0. 25	1. 22	-	2. 61
棒状格子	0.58	-	0.54	0.56	6.5	-	19.5	1.00	0.25	0.94	-	2.61
格子(段違)	0. 79	-	0.53	0.66	6.5	-	19.5	1.00	0.25	1.28	-	2.58

 $W = k \cdot n \cdot M \cdot V \cdot sin \theta$ ここで, W: 衝突運動量(kg · m/s) M:物体質量(kg) V: 衝突速度(m/s) k: 衝突効率係数 n: 衝突回数 sin θ : 衝突角度係数項 θ : 衝突角度(ラジアン)

(1)

置においても約 75%の開口率であったので, 衝突効率 係数を各々80%, 25%と設定した.

板状障害における衝突運動量と圧縮強度の関係を図-7 に示す.障害の形状や数量,落下速度が異なる場合で

図-9 棒状障害における効率係数 の影響 Influence of efficiency factor on stick obstacle

図-10 消費時間と圧縮強度の関係 Concern between spending time with strength

Concern between impacting number with strength

も、衝突運動量を指標とすることで、圧縮強度をおおむ ね同一の累乗関数により表わすことができることが明ら かとなった.

漏斗型障害の場合,図-6から幾何学的な衝突効率を 80%としていたが,実際の発現強度を,図-8に示すように板状障害の強度発現と比較すると,実際の衝突効率 は50%程度であったものと推定される.これは漏斗型 の場合,砂礫材料の流下が開口部近傍に集中し,その 1/2のみが漏斗障害に接触するという現象が表われたも のと考えられる.

棒状障害の場合は、図-9 に示すように、効率係数が 0.25 の場合に板状障害と同様な強度発現となったので、 幾何学的な衝突効率の設定が、実現象とおおむね適合し ていたものと考えられる.

4. 自重落下混合とミキサによる練混ぜとの 相違

4.1 混合・練混ぜ方法による圧縮強度の相違

図-10 には、自重落下混合装置、傾胴型ミキサ、パン型ミキサの各々により得られた供試体の圧縮強度を混合・練混ぜの消費時間との関係として示す.同じ消費時間の混合・練混ぜであれば、傾胴型ミキサより自重落下混合のほうが、自重落下混合よりパン型ミキサのほうが、強度発現が大きい.

表-3 単位質量当たりの衝突運動量の算定結果 Calculation results of impacting momentum by unit mass

混合	落下	消費	積算	積算	衝突	衝突	衝突	衝突運	圧縮
方式	回数	時間	落下	衝突	速度	角度	効率	動量(kg	強度
		(sec)	高(m)	回数	(m/s)	係数	係数	m/s/kg)	(N/mm ²)
自重落下	1回	5.4	1.5	7	0.28	0.86	1.00	1.67	0.83
Z型	2回	14.6	3.0	14	0.21	0.86	1.00	2.47	1.19
(7枚)	3回	17.1	4.5	21	0.26	0.86	1.00	4.75	1.43
傾胴型	-	5	0.9	2.3	0.20	1.00	1.00	0.46	0.59
重力式	-	10	1.8	4.6	0.20	1.00	1.00	0.91	0.64
ミキサ	-	20	3.7	9.2	0.20	1.00	1.00	1.82	0.80
	-	60	11.0	27.6	0.20	1.00	1.00	5.46	1.04
	-	180	33.1	82.8	0.20	1.00	1.00	16.4	2.13
パン型	-	10	0.0	8.3	1.13	1.00	1.00	9.38	1.43
強制練り	-	60	0.0	50	1.13	1.00	1.00	56.3	2.02
式ミキサ	-	180	0.0	150	1.13	1.00	1.00	168.8	2.37

図-12 衝突運動量と圧縮強度の関係 Concern between impacting momentum with compressive strength

Fluctuation of compressive strength

傾胴型ミキサにおいては、ミキサ1回転ごとに1回ミ キサ底部に材料が自由落下によりたたきつけられる、パ ン型ミキサにおいては、ミキサ1回転ごとにパドルに1 回たたきつけられる、と各々仮定して算出したたたき つけ回数と圧縮強度との関係(図-11)においても、た たきつけ回数のみで強度の大小を表すことはできていない。

4.2 衝突運動量による混合・練混ぜの評価

各々の混合・練混ぜ方法に対して、練混ぜ中の物体の 衝突運動を図-3 のように設定し、この過程により練混 ぜ中の衝突運動量を算定した結果を表-3 に示す.この 衝突運動量は混合時のたたきつけ回数と衝突速度の積に ほかならない. 衝突運動量と圧縮強度との関係を図-12 に示す.

傾胴型ミキサ内の衝突速度(重力加速度による)に対 して、自重落下の平均速度(障害物衝突速度)が少し大 きくなること、パン型ミキサのパドルの回転速度はさら に大きいことから、衝突運動量を指標にすることによっ て、3種類の混合・練混ぜがほぼ同じ対数曲線上で表さ れるものとなった.衝突運動量の時間積分はエネルギー に相違ないので、いわゆる混合・練混ぜエネルギーが圧 縮強度の大きさに影響していることを衝突回数と衝突速 度の積により相対的に評価できていることが示唆される 結果と考えられる.

図-13 には、各混合・練混ぜ方法における圧縮強度の ばらつき状態を示す. ミキサで練混ぜたものには圧縮強 度のかなりのばらつきが求められるが、自重落下混合で の圧縮強度のばらつきは小さい.単位セメント量が小さ いので、ミキサによる練混ぜでは1か所に投入したセメ ントの分散が難しいことが考えられる.ベルトコンベヤ のベルト上の砂礫上にセメントを帯状に散布することは、 この種の貧配合の材料でのセメントの分散すなわち圧縮 強度の均等化には有効であったことが推察されるもので ある.

5. 自重落下混合の数値シミュレーション

5.1 自重落下混合の数値解析による表現

自重落下による混合効果の評価に障害物への衝突運動 量の概念を適用することで混合の効率を相対的に評価で きること、衝突運動量の概念が、また傾胴型重力式ミキ サやパン型強制練り式ミキサによる練混ぜ作用との相違 の説明にも適用されることが明らかとなったが、これら の定式は、非常に簡単な物体移動の仮定に基づいたもの であり、粒子間の相互作用なども無視したものとはなっ ていなかった.そこで、混合の機構をさらに明らかにす るため、粒状体の力学に基づいた数値解析による検討を 行なった.

解析手法には、2次元個別要素法(DEM)⁵⁾を用いた. 個別要素法は図-14 に示すように、離散要素間の作用力 をバネとダッシュポッドを用いて算定するものである. 図中のkはバネ定数を、C は減衰定数を、添字の n は法 線方向を s は接線方向を示す.また、接線方向には摩擦 係数が設定されている.各設定値は既往の研究 $^{\circ}$ を参考 に設定した.ここで kn は 3.5×10^{7} N/m とし、Cn は各要 素に設定した反発係数を再現するように決定した.接線 方向の各値は法線方向の 25%として設定した.また、

図-14 個別要素法の概念 Schematic view of DEM

表-4	解析ケース
	Case of calculation

解析	粒径(mm)	混合装置 種類	要素間 反発係数	加振
Case1	混合粒径(30,15,7.5)	Z型7枚	0.05	無し
Case2	単一粒径15	Z型7枚	0.05	無し
Case3	単一粒径15	Z型7枚	0. 20	無し
Case4	単一粒径15	Z型7枚	0.05	有(100Hz)
Case5	単一粒径15	漏斗型5枚	0.05	無し
Case6	混合粒径(70,50,30)	Z型7枚	0.05	無し
Case7	混合粒径(70,50,30)	Z型7枚	0.05	有(100Hz)

摩擦係数は静止摩擦・動摩擦を区別せず 0.6 とした.

5.2 解析ケース

表-4には解析ケースの一覧を示す. Case1は,砂礫材 料の粒度分布(図-1)の中央粒径D50の15mmに対して, その2倍の30mm, 1/2倍の7.5mmの3分級の組み合わせに よって粒度分布を代表させたものである. Case2~Case5 は、中央粒径D50の15mmの均等粒子とした場合である. これに対して, Case6とCase7は20mm以上の大粒のみを 対象として,これを70mm,50mm,30mmの3分級で組 み合わせたものである. Case3はCase2の要素間反発係数 を大きくした場合,Case5はCase2の障害物配置を漏斗型 にした場合,Case4とCase7は各々,Case2,Case6に対し て、振動機による加振作用を与えた場合である. ここで 振動の表現は、装置全体を100Hzで振動させ、そのとき の振幅を水平鉛直共に1.06mmとすることによっている.

5.3 解析上での混合の評価

自重落下混合装置の通過によってセメント粒子と砂礫 粒子の混合が達成される理由はいくつも考えられるが, 粒子同士の接触の機会が増すことによって,粒子表面に 付着したセメントの分散性が高まったり,障害物への衝 突自体がセメント粒子を分散させたりすることによって 混合が進行したりするなどあり得る.しかし,混合とい う作用を非常に簡便に定義するならば,装置に投入され た粒子の順序が,装置通過後にランダムになっているこ とと定義できる.例えば,装置内に粒子の落下を妨げる ものがない場合には,投入された粒子の順序の入れ替わ

りは起こらない.しかし、粒子が何らかの障害物に衝突 すると、粒子の順序が入れ替わると推察できる.そして、 その障害物が適切な場合には順序の入れ替わりが激しく, 効率的に混合進行するものと考えられる. そこで, 数値 解析結果を粒子順序の入れ替わりを指標として整理した.

粒子順序の入れ替わりを式(2)の混合指標により評価す る.

$$C = \frac{1}{N_G} \sum_{n} \left| i - j \right| \tag{2}$$

ここで、N_Gは同一時刻に落下する粒子数、nは粒子の 総数, i は粒子が投入される順位, j は粒子が装置を通 過した順位である. 自由落下のように投入時と通過時の 順位が同じ場合は C=0, C が大きくなるほど混合してい ることになる.

図-15 は各ケースの混合指標を比較した図である.単 一粒径の Case2 から Case5 において、振動機を作用させ た Case4 は 5.5 と最も大きく, 漏斗型の Case5 は最も小 さい. Case4 の C=5.5 は、5 個以上前後に投入された粒 子と混合することを意味している. 混合粒径とした Case6 と Case7 でも、振動機を作用させた Case7 の混合 指標が大きくなっている.

この理由は以下のように説明できる. 落下してきた粒 子が装置に衝突する際、振動機で振動を与えることで衝 突相対速度が大きくなる. 例えば,100Hz, 振幅 1mm の バイブレーターでは最大 0.15m/s の速度が付加される. 衝突速度が大きくなると跳ね返り(反発)が大きくなり, 落下してくる粒子と反発した粒子間で衝突頻度が増加す る. その結果, 混合が促進されることになる. このこと は、反発係数の設定が異なる Case2 と Case3 との差にも 表われており、Case2 より反発係数が大きい Case3 で混 合指標が大きい.

さて,同一装置内を通過する粒子が,反発・衝突を繰 り返す場合、一定区間内を通過するのに要する時間は長 くなるはずである.これは、装置を通過する間の粒子の 運動量が大きいことに等しい. 図-16 には各解析ケース での落下時間を、図-17 には単位質量当たりの平均運動 量を示す. 振動機の有無のみが条件の違いである Case2 と Case4, Case6 と Case7 では, Case4 の平均運動量は Case2 より 12% 大きく, Case7 は Case6 より 15% 大きい. 実際に、自重落下混合装置による実験で得た結果におい ても、振動を与えることによって圧縮強度が大きくなる 現象は明らかである.実際の土砂の場合には、形状が不 規則であるため跳ね返る方向もランダム性が高く、装置 を振動させたことによる効果が顕著に表われると考えら

れる. さらに、実際の土砂の場合には粘着性があるため、 板に堆積することも予測できる. 振動機による加振には, フリクションカッターの効果もあり、障害板への土砂の 堆積の抑制にも効果があるのではないかと考えられる.

次に, Case1, Case6 および Case7 は混合粒径の計算結 果であるが、平均粒径が小さい Casel の方が混合指標の 値が大きい. これは, 図-18 の〇で示すように Case6 や Case7 の場合、大きい粒子が小さい粒子の進行を阻害す るため、混合効率が悪くなると判断できる.

また、図-19の〇で示すように、障害板の配置によっ ては、障害板と接触しない粒子があるだけでなく、中央 部の開口部のため反発・衝突の頻度が低くなる. それゆ え、同一条件の粒子を落下させたCase2とCase5では、

-19 Cases の解析福来 Simulation results of Case5

Case5の混合指標が5割近くまで減少する. 実際に, 自重 落下混合装置による実験で得た結果においても, 漏斗型 障害が板状障害に比べて圧縮強度が小さくなる現象が生 じている.

解析結果では、大粒を含むものでは、混合効率は小さ いが落下時間が大きくなる.これは前述のように粒子間 で閉塞が生じることによるのだが、このことからは、お なじ粒度構成の材料を落下させるのであれば、落下時間 が小さいすなわち落下速度が大きくなる障害板の配置が より大きい混合効率を得ることが推察されるものである. それゆえ、実験結果の整理において平均質量と落下速度 を掛け合わしたパラメータが混合傾向を評価するものと なったと考えられる.

これらの評価結果からは、自重落下混合装置の設計に おいては、振動の付与と、粒子間の反発・衝突を促進さ せ、かつ粒子の進行阻害を発生させない障害板の配置が 重要であることが推察されるものである.本解析手法は 自重落下混合のメカニズムを合理的に説明することがで きるので、最適な製造装置の設計にこの解析手法を利用 することの有用性が大きいと考えられる.

6. まとめ

CSGの製造効率の向上等を目的として,自重落下混 合模擬装置を利用して,砂礫とセメントの自重落下混合 機構と,これに影響を及ぼす落下混合時の障害物の影響 を評価した.さらにDEM(個別要素法)によって,自 重落下混合時の粒子間挙動をシミュレーションする数値 的解析手法の可能性を検討した.この結果,以下が明ら かとなった.

- 自重落下による混合効果の評価に衝突運動量の概念 を適用し、これに障害物への衝突角度と衝突効率を表 わす係数を導入することで、板状障害物・棒状障害物 の数量や種類あるいは落下速度による混合効果の相違 を説明できる。
- 2)障害物の数量を大きくすればたたきつけ回数は多く なるが、この結果、落下速度が小さくなれば、かえっ て衝突運動量は小さくなる現象が生ずるので、衝突運 動量を最大とするような障害物配置が存在することが 推察される。
- 3) 自重落下時の障害物への衝突運動量の算定手法を, 傾胴型重力式ミキサおよびパン型強制練り式ミキサに よる練混ぜ作用にも適用したところ,各々の方法によ る混合の効率を衝突運動量により相対的に評価できる.
- 4) DEM(個別要素法)による自重落下混合時の粒子 間挙動のシミュレーション解析によって、自重落下時 の振動の有無による差と、障害板の配置が粒子間の反 発・衝突に及ぼす影響、落下時の閉塞現象が相対的に 表現できる。
- 5) 自重落下時の混合効果を表わすものとして、単位質

量当たりの平均運動量とともに粒子順序の入れ替わり 指標が有効である.

6) DEM(個別要素法)によって、自重落下混合のメ カニズムを説明することができるので、最適な製造装 置の設計にこの解析手法を利用することが効率的であ る.

参考文献

 藤沢侃彦,吉田等,平山大輔,佐々木隆: 台形CSGダムの特徴と現在までの検討状況,ダム技術, No.191, pp.2-23, 2000.10

- 2)芳賀敏二,豊田光雄,今井裕一,有銘伸与: CSG材料の 工学的性質の経時変化,ダム技術, No.169, pp.49-60, 2000.10
- 3)前田又兵衛,山田一宇,内田明:新しい練り混ぜ方法に基 づいた連続ミキサの開発と性能特性に関する研究,日本建築 学会構造系論文集, Vol.505, pp.23-30, 1998.3
- 4) 岡谷豊,高橋義春,道場信昌,楠見正之:砂礫とセメントの簡易混合機開発基礎実験,土木学会第57回年次学術講演 会講演概要集 VI, pp.507-508, 2002.9
- 5) Cundall,P,A : A Computer Method for Simulating Progressive Large Scale Movement in Blocky Rock System, Proc of int'l symposium on rock Mechanism,Vol.2,pp.129-136,1971
- 6) 伊藤一教,樋口雄一,東江隆夫,勝井秀博:個別要素法に 基づく捨石のランダム性を考慮した潜堤の変形予測手法, 海岸工学論文集,第48巻, pp.806-810, 2001