放送用アンテナタワーの風振動性状

吉川 優・浅見 豊・井上 哲士朗*1・篠崎 洋三*1・藤山 淳司*1

Keywords: antenna tower, wind induced vibration, wind tunnel test, vortex excitation アンテナタワー,風振動,風洞実験,渦励振

1. はじめに

放送用または通信用タワーに 作用する風外力は架構形状によ る影響が大きく,特に架構上に アンテナが数多く設置される場 合にはその設置状況に依存す る.本研究は,図-2に示すような 60mの下部構造および30mのTV アンテナ(以下ゲイン塔)で構 成される高さ90mのTV放送用ア ンテナタワーを対象として風洞 実験を実施し,タワーに作用す る風荷重を整理するとともに風 振動性状を評価することを目的 とする.

図-1 タワー外観 Exterior 風振動を調べるにあたり,自 然風の乱れによる風向方向の振

動と,構造物後流の周期的な渦

発生による風直角方向の振動とに分けて検討する.風向 方向振動は,空力実験からタワー各部の設計用風力係数 を整理し,応答解析により求める.風直角方向振動は, 空力振動実験およびゲイン塔部分モデルに対する全弾性 模型実験から応答を直接計測し,その性状を把握する. なお,本検討では風振動時におけるアンテナの機能維持 という観点から,各応答について頂部回転角を評価す る.

2. 風向方向振動

2.1 評価方法

風向方向振動は,空力実験^(注1)から外力を得て応答解 析により評価する.本アンテナタワーは1次モードおよ

*1 設計本部 構造(井上Gr.)

図-2 アンテナタワー概要 Contents of the tower

空力実験は,構造物 に作用する風力を検出 する実験法である. (風洞床下)に ロードセルを設置し, 風洞気流中の模型全体 に作用する力を計測す る.実験結果は風力係 数として整理し,応答 解析に用いる.

放送用アンテナタワーの風振動性状

び2次モードにおいて,地上60m以上のゲイン塔部分が 大きく振られる振動特性を有する.これらの影響を考慮 するためには,風力の高さ方向分布を得て各振動モード に対応した風力を定める必要があるが,空力実験では模 型全体に作用する風力しか評価できない.そこで実験模 型の各部(アンテナ,ステージ等)を着脱可能なものと し,それらの搭載条件を変えながら各模型状態で実験を 行うことによって,実験結果の差分から各部分ごとに作 用する風力を得ることができる.これにより風力の高さ 方向分布が推定でき,高次モードまでの応答評価が可能 となる.

2.2 空力実験

2.2.1 実験条件

空力実験模型はアンテナやステージ等が着脱可能とな るよう製作し,構成要素の最も少ないケースから,ひと つづつ付加していき全て搭載したケースまで,計7ケー スの模型状態を設定する(ゲイン塔のみのケースについ ては,模型規模を考慮して縮尺率の異なる模型を別途用 意する).各ケースの外観を図-3に示す.タワー全体モ デル(case_a~f)は模型縮尺1/250,ゲイン塔のみの部 分モデル(case_g)は1/100とする.実験条件を表-1に, 実験風向を図-4に示す.実験気流は,case_a~fは地表面 粗度区分2の勾配流を模擬し,ゲイン塔のみの部分モデ ルについては一様流とした.実験状況を写真-1~4に示 す.

表-1 実験ケース(:模型各部の設置状況を示す) Test cases

実験ケース	а	b	с	d	е	f	g
ゲイン塔							
CFT柱							
FMアンテナ							
FPU&ステージ3段							
パラボラステージ							
パラボラアンテナ上3段							
パラボラアンテナ下2段							
実験気流	勾配流(粗度区分2)			一様流			
実験風向	0~180 0~90		0~45				
模型縮尺	1/250			1/100			

Test direction of the wind

2.2.2 実験結果

(模型全体に作用する風力の測定結果)

各実験ケースにおいて模型全体に作用する風力(風向 方向の水平力および転倒モーメント)の平均値を測定 し,式(1)(2)により風力係数,転倒モーメント係数とし て整理する.

$$Cd = \frac{F}{\{q_H \cdot B \cdot H\}} \qquad \cdot \cdot \cdot (1)$$
$$Cm = \frac{M}{\{q_H \cdot B \cdot H^2\}} \qquad \cdot \cdot \cdot (2)$$
$$\Box \Box \Box \Box$$

- Cd: 風力係数
- Cm:転倒モーメント係数
- F: 風向方向に作用する水平力の平均値
- M: 風向方向に作用する転倒モーメントの平均値
- q_{μ} :頂部高さにおける速度圧
- B :代表幅 ・case_a ~ f : 10mm (実大換算2.5m) ・case_g : 12mm (実大換算1.2m)
- H :代表高さ・case_a~f:360mm(実大換算90m) ・case g :300mm(実大換算30m)

case_a ~ fの風力係数および転倒モーメント係数の風向 による変化を図-5および図-6に, case_gの風力係数の風 向による変化を図-7に示す.

2.2.3 風力の高さ方向分布の設定

実験結果に基づいて,アンテナタワー各部に関する風 力係数を設定する.実験結果および平面形状の対称性を 考慮し,case_aおよびcase_bについては風向180°,その 他のケースについては風向0°を対象風向とする.まず case_gの実験結果からゲイン塔における風力係数が決ま る.case_fはゲイン塔+CFT柱のモデルであり,ゲイン塔 の風力係数が既知であるため,case_fの風力係数および 転倒モーメント係数が実験値と合うようにCFT柱部分の 風力係数を設定する.同様にして,case_e d c b aの順に各部分ごとの風力係数を定めてゆくことによ り,風力の高さ方向分布が得られる.この時,各部の見 付面積は風向方向に正対する面への投影面積とする.各 部の部分風力係数,代表幅および見付面積の充実率を表-2に示す.

表-2	風力係数分布	
	Distribution of a	١.

Distribution of drag coefficient					
部位	風力係数	見付幅	充実率		
ゲイン塔	1.16	1.2	1		
FMアンテナ	1.05	2.5	1		
FPU&ステージ	1.04	12	0.45		
パラボラ(ステージのみ)	0.80	13	0.39		
パラボラ(ステージ&パラボラアンテナ)	1.40	13	0.82		
基部	0.79	2.5	1		

2.3 応答解析

2.3.1 応答解析手法

応答解析により風向方向の風振動を求める.図-8およ び表-3に示す1次モード~3次モードを対象とし,次数毎 にスペクトルモーダル法による統計的応答解析法を実施 する^(補足).平均風力分布は実験結果に基づいて設定した 値を用い,変動風力はバフェッティング理論¹⁾に基づき 展開する.この時,風上面と風下面の変動風力は無相関 とし,且つ空間相関に基づく低減効果については高さ方 向のみモデル化し,平面方向は構造物の形状を考慮して 完全相関とする.

応答は回転角で評価する.各次の最大回転角は式(3)よ り得るものとする.

 $\hat{\theta}_{j} = \bar{\theta}_{j} + \sigma_{\theta_{j}} \cdot g_{f_{j}}$ ・・・(3) ここで,j 次回転角の平均値,標準偏差,ピークファク ターをそれぞれ $\bar{\theta}_{i}$, $\sigma_{\theta_{i}}$, $g_{f_{i}}$ とする.

1次モード~3次モードの重ね合わせについては式(4) (5)(6)(7)の通りとする.

$$\hat{\theta}_{total} = \overline{\theta}_{total} + \sigma_{\theta_{total}} \cdot g_{f_{total}} \cdot \cdots \cdot (4)$$
$$\overline{\theta}_{total} = \sum_{j} \overline{\theta}_{j} \cdot \cdots \cdot (5)$$
$$\sigma_{\theta_{total}} = \sqrt{\sum_{j} \sigma_{\theta_{j}}^{2}} \cdot \cdots \cdot (6)$$
$$g_{f_{total}} = \frac{1}{n_{j}} \sum_{i} g_{f_{j}} \cdot \cdots \cdot (7)$$

表-3 振動特性

Characteristics of Vibration					
	固有振動数(Hz)	一般化質量(ton)			
1次	0.345	35.889			
2次	0.649	9.017			
3次	2.174	52.021			

. ..

2.3.2 応答解析結果

前項の手法に基づき応答解析を実施した.減衰定数の 設定には既往の調査結果²⁾を参考とし,0.5%~3%(全次 数一定)の範囲を対象として応答を算定する.解析結果 は最大頂部回転角の風速による変化として示す.各モー ド別の応答解析結果を図-9~11に示す.同図より,1次 モードの寄与が大きいことが分かる.

1次~3次モードの応答を重ね合わせた結果を図-12に 示す.頂部風速30m/sにおいて,減衰が1%以上であれ ば頂部回転角の最大値が1[°]以内であることが確認でき る.

3. 風直角方向振動

3.1 評価手法

構造物後流の渦発生による風直角方向の振動は,渦励 振(渦発生に伴う周期的外力と構造物の固有振動との共 振現象)等が発生する可能性を考慮し,空力振動実験よ り求めるものとする.空力振動実験は,質量・バネを有 する振動模型を用いて,気流中の模型の応答を直接検出 する実験である.ここでは以下の2種類の空力振動実験 を実施する.

3.1.1 2 自由度空力振動実験

アンテナタワーをCFT柱部分とゲイン塔部分の2質点 系としてモデル化し,2自由度の振動模型を用いた空力 振動実験を実施する.アンテナタワー全体の2次モード までを対象として風直角方向振動を求める.

3.1.2 ゲイン塔全弾性模型実験

 ゲイン塔のみに着目し,模型全体を弾性体とした空力 振動実験である.ゲイン塔部分は見付幅が小さく,また 長さ30mに渡って平面形状がほぼ均一であることから, 当該部分に対して渦励振発生の可能性が大きいと予想される.ただし,ゲイン塔単体の1次モードに関する渦励 振は低風速時に越えてしまい,影響が小さいことが既往の知見より推察されるため,本実験では2次モード(ゲ イン塔単体に関する2次モード)を対象に渦励振発生の 有無を調べる.

3.2 2自由度空力振動実験

3.2.1 実験概要

模型縮尺は1/125とする.実験模型は下部構造(CFT柱 部)およびゲイン塔をそれぞれアルミ製剛模型とし(ア ンテナ等の付属物はアクリル製またはバルサ製),それ ぞれ模型縮尺に応じた質量を付加する.各部の基部には 板バネを設置し,1方向2自由度系の模型とする.その 際,板バネの振動方向は風直角方向のみとする.

図-13に示すように,レーザー変位計を2台用いてゲイ ン塔およびCFT柱頂部の時刻歴変位を計測する.実験気 流は一様流とし,風向は図-14に示すように45°ピッチの 5風向とする.自由振動時の減衰定数は1.8%であった. 実験の縮尺諸元を表-4に示す.実験状況を写真-5に示 す.

図-13 2自由度振動実験概要 Aerodynamic vibration test for double degree of freedom system

3.2.2 実験結果

図-15にゲイン塔部分における回転角(最大値)の風速 による変化を示す.ばらつきはあるものの全風向ともに 風速増加に伴って概ね単調増加するが,頂部風速50m/s 時に回転角0.15°以下と風向方向振動に比べて小さい.

3.3 ゲイン塔全弾性模型実験

3.3.1 実験概要

ゲイン塔部に着目し,当該部位の2次モードに関する 風直角方向振動について検討する.高さ方向に断面が均 ーである金属シャフトを用いて全弾性模型による空力振 動実験を実施する.模型概要を図-16に示す.重量,剛 性,加工性を考慮しシャフトは銅製とし,模型縮尺は1/ 50とする.弾性体は銅製シャフトのみとし,付属物であ るアンテナは力を伝えるのみで剛性・重量に寄与しない ものとして軟質スポンジを用いる.基部は固定とし,頂 部および1/3高さの位置に小型加速度計を設置して風直角 方向の応答加速度を計測する.実験の縮尺諸元を表-5に

Full elastic model

3.3.2 自由振動試験

全弾性模型の自由振動特性を把握するため,自由振動 試験を実施する.無風時に模型頂部を金属棒で叩き,自 由振動過程を計測する.自由振動のパワースペクトルを 図-17に示す.28Hzに1次モードが,175Hzに2次モードが 現れている.130Hz~200Hzのバンドパスフィルターを 施した後の自由振動波形から対象とする2次モードの減 衰定数を算出したところ0.12%であった.

3.3.3 気流中振動実験結果

実験気流は一様流とし,実験風速を0m/sから約24m/s まで変化させて振動時の応答加速度を計測する.図-18は 模型の最大応答加速度(頂部)と風速との関係を示した ものである.実験ケースは,銅製シャフトのみの場合 と,軟質スポンジ製のアンテナを設置した場合の2通り とし(写真-6,7),アンテナを設置したモデルは0°お よび45°の2風向について実施する.同図より,次の2点 において2次モードの渦励振が観察された.

[渦励振1]: 銅シャフトのみ,実験風速12.9m/s

[渦励振 2]: 銅シャフト+アンテナ,実験風速23.4m/s,風向45[°] 銅製シャフト+アンテナのモデルにおいて風向0[°]の場合 は渦励振は発生しなかった.自由振動試験による2次の 固有振動数および共振風速からストローハル数を算出し たところ,銅製シャフトのみの場合でSt=0.20,銅製シャ フト+アンテナ(風向45[°])の場合でSt=0.17となった. また[渦励振 2]における時刻歴波形の一部を図-19に示 す.実線が頂部の加速度波形,破線が中間部の加速度波 形である.2次モードの共振波形であるため,両波形は 逆位相で振動していることが分かる.

3.3.4 共振時風力係数

実験で計測された2次の渦励振について,共振時風力 係数を求める.最大応答加速度と模型質量およびモード 形状から模型に作用する等価風力分布を求め,発振風速 時の速度圧および模型寸法より共振時風力係数の分布を 求める.

$$Cr(z) = \frac{F(z)}{q_H} \cdot B \cdot dz = \frac{\{\rho \cdot dz \cdot \ddot{x}(z)\}}{q_H} \cdot B \cdot dz$$

Cr(z):高さzにおける共振時風力係数

- F(z):高さzにおける風力
- *q_H*:共振風速時の速度圧
- B
 : 代表幅
 ・ 銅シャフトのみ: 15mm

 ・ 銅シャフト+アンテナ (風向45°): 22.6mm
- ρ :銅シャフトの線密度
- $\ddot{x}(z)$:高さzにおける最大応答加速度

上式より求めた共振時風力係数分布を図-20に示す.

3.3.5 共振時回転角

実験で得られた応答加速度より共振状態における回転 角を求める.ゲイン塔各部における回転角の最大値を図-21に示す.回転角はゲイン塔頂部において最大となり, 実大換算風速24m/s時に約0.06°であった.

空力実験から本アンテナタワーに関する風向方向の風 力係数分布を整理し,応答解析により風向方向振動を算 定した.また,2自由度空力振動実験およびゲイン塔全 弾性模型実験を実施し,風直角方向振動を計測した.

ゲイン塔頂部回転角の最大値で各応答を比較すると, 頂部風速30m/s時に風向方向振動は約1°(減衰1 %),風直角方向振動は約0.05°であった.ただし,風 速24m/s時にゲイン塔部において2次の渦励振が発生し (風向45°),その際の頂部回転角は約0.06°であっ た.本アンテナタワーの風振動性状として,風向方向振 動が卓越していることを確認した.

写真-5 空力振動実験模型

Model for aerodynamic vibration test

写真-6

ゲイン塔全弾性模型

(アンテナ有)

with antenna

Full elastic model

写真-7

ゲイン塔全弾性模型

(銅製シャフトのみ)

Full elastic model

without antenna

(補足)
スペクトルモーダル法は,風応答解析において一般的に用
いられている統計的応答解析法である.
一般化変位の平均値:
$$\bar{x}_{Gj} = \bar{F}_{Gj}/K_{Gj}$$

一般化変位の標準偏差: $\sigma_{xj}^{2} = \int_{0}^{\infty} S_{xj}(n) dn$
一般化変位の最大値: $\hat{x}_{Gj} = \bar{x}_{Gj} + g_{j}\sigma_{xj}$
ここで,
 \bar{F}_{Gj} : j 次モードの一般化風力の平均値
(平均風力係数より算定)
 K_{Gj} : j 次モードの一般化剛性
 $K_{Gj} = (2\pi n_{j})^{2} M_{Gj}$
 M_{Gj} : j 次モードの一般化質量
 $M_{Gj} = \int_{0}^{H} m(z)\mu_{j}(z)^{2} dz$
 $m(z)$: 質量の高さ分布
 $\mu_{j}(z)$: j 次モード

$$\begin{aligned} \left|\chi_{G_j}^{2}(n)\right| &= \frac{1}{K_{G_j}^{2}} \frac{1}{\left\{1 - \left(\frac{n}{n_j}\right)^2\right\}^2 - 4h_j^2 \left(\frac{n}{n_j}\right)^2} \\ n_j : j 次固有振動数 \\ h_j : j 次減衰定数 \end{aligned}$$

$$S_{Fj}(n)$$
: j 次モードの一般化風力のパワースペクトル
(バフェッティング理論に基づき展開)

$$S_{F}(n) = \int_{0}^{H} \int_{0}^{H} \int_{-B/2}^{B/2} \int_{-B/2}^{B/2} \rho^{2} \cdot U(z_{1}) \cdot U(z_{2})$$

$$\cdot C_{D}(z_{1}) \cdot C_{D}(z_{2}) \cdot R_{u}(n, y_{1}, y_{2}, z_{1}, z_{2})$$

$$\cdot \sqrt{S_{u}(n, y_{1}, z_{1}) \cdot S_{u}(n, y_{2}, z_{2})}$$

$$\cdot \mu(z_{1}) \cdot \mu(z_{2}) dy_{1} dy_{2} dz_{1} dz_{2}$$

$$= (2q_{H}I_{H}B)^{2} \frac{S_{u}'(n)}{n} \int_{0}^{H} \int_{0}^{H} C_{D}(z_{1}) \cdot C_{D}(z_{2})$$

$$\cdot R_{u}(n, z_{1}, z_{2}) \cdot \left(\frac{z_{1}}{H}\right)^{\alpha - 0.05} \left(\frac{z_{2}}{H}\right)^{\alpha - 0.05}$$

$$\cdot \mu(z_{1}) \cdot \mu(z_{2}) dz_{1} dz_{2}$$

$$R_{u}(n, z_{1}, z_{2}) :$$
 \mathfrak{B}

$$R_{u}(n, z_{1}, z_{2}) = \exp\left\{-8 \frac{n|z_{1} - z_{2}|}{U_{H}}\right\}$$

$$S_{u}'(n) :$$
 \mathfrak{B}

$$\mathfrak{B}$$

$$\mathfrak{B}$$

$$\mathfrak{B}$$

$$\mathfrak{B}$$

$$S'_{u}(n) = \frac{4(U_{H})}{\left\{1 + 70.8 \left(\frac{nL_{H}}{U_{H}}\right)^{2}\right\}^{5/6}}$$

 g_f : ピークファクター

$$g_f = \sqrt{2\ln v_f T} + \frac{0.5772}{\sqrt{2\ln v_f T}}$$

 v_f : レベルクロッシング数 (単位時間に平均値を横切る回数)

$$\upsilon_{f} = \frac{1}{\left(2\pi\right)^{2}} \frac{\sigma_{\dot{x}}}{\sigma_{x}} = \sqrt{\frac{\int_{0}^{\infty} n^{2} S_{xj}(n) dn}{\int_{0}^{\infty} S_{xj}(n) dn}}$$

- 以上より得られる一般化変位にモード $\mu_i(z)$ を乗じるこ とにより,各高さの変位を得ることができる.
 - また,回転角の応答 $\overline{ heta}_{j}$, $\sigma_{ heta_{j}}$ は,

$$\frac{\mu_{j}(z_{1}) - \mu_{j}(z_{1})}{z_{1} - z_{2}}$$

を \bar{x}_{Gj} , σ_{xj} に乗じて求めることができる.

- 1) 大熊武司,神田順,田村幸雄 :建築物の耐風設計, 鹿島出版会, pp.136-143, 1996.
- 2) 日本建築学会 :建築物の減衰,丸善株式会社,pp.262-265,2000.