150N/mm²級の超高強度コンクリートを用いたRC柱の構造性能

渡辺英義・是永健好・小室 努*1・川端一三*1

Keywords: ultra high strength concrete, reinforced concrete column, ultimate strength, ductility 超高強度コンクリート, RC柱, 終局耐力, 靱性

1. 序

近年の高層集合住宅の需要増を背景に,鉄筋コンク リート(RC)建物の超高層化,大スパン化が盛んに進めら れている.それらの建物の下層階柱には大きな鉛直荷重 が作用するため,高強度コンクリートが用いられる場合 が多い.筆者らは100N/mm²級のRC柱の構造実験を実施 し,耐震性能の評価法について検討を行ってきた¹⁾.

今回,さらなる高層化,大スパン化を目的として, 150N/mm²級の超高強度コンクリートを用いたRC柱の構 造実験を実施した.本報では,実験の概要と結果,変形 成分や終局耐力などについての検討結果を報告する.

2. 実験計画

2.1 試験体

試験体一覧を表-1 に,試験体の断面と配筋を図-1 に示 す.試験体は断面B×D=300×300mm,せん断スパン比 M/QD=1.5,軸力比N/(BD B)=0.33を共通とした6体 である.パラメータは主筋比pg,横補強筋比pw,想定施 工方法(現場打設工法,PCa工法)とした.

現場打設工法の基準試験体150-1に対して,150-2は芯 鉄筋を配置して主筋量を多くしたもの,150-4は横補強筋 比を減らしてせん断破壊を想定したものであり,150-6は 最外縁主筋量を増やして主筋の付着状態を厳しく設定し たものである.

150-3,5は,150-1,4にPCa工法を適用した試験体である.PCa試験体では図-1に示すように,主筋にネジ鉄筋を用い,試験区間の柱脚部にネジスリーブ継手を設けている.基礎スタブと試験区間の接合は,試験区間を所定の位置にセットした後,スリーブ内と接合目地(目地高さ10mm)部分を無機グラウト(現場封緘養生4週強度

表-1 試験体一覧

List of Specimen

	工法	主筋 (SD685)	主筋比 pg(%)	横補強筋	横補強筋比 pw(%)	軸力比
150-1	TB↓B+T ±Л	12-D16	2.65		1.00	0.33
150-2	現场f] 設	16-D16	3.54	U6.4-@40		
150-3	PCa	12-D16 (ネジ)				
150-4	現場打設	12-D16	2.65	U6.4-@80	0.50	
150-5	PCa	12-D16 (ネジ)				
150-6	現場打設	20-D16	4.42	U5.1-@40	0.98	

図-1 試験体の断面と配筋 Section and Bar Arrangement of Specimen

*1 設計本部

111N/mm²) で充填することにより行った.

コンクリートの調合と加力時の圧縮強度試験結果を表-2 に示す.使用したコンクリートは水結合材比w/c=15% とし,結合材には早強ポルトランドセメント,スラグ石 膏系混和材,シリカフュームを質量比7:2:1で混合し たものを用いた.また,火災時のコンクリート爆裂対策 に有効なポリプロピレン繊維を試験体への打設時に3kg /m³混入した.材料試験に用いた供試体は,試験体の試験 区間と同一の寸法と養生条件で製作した角柱からコア抜 きして採取したものである.

鉄筋の材料特性を表-3 に示す.主筋にはD16のSD685 を,横補強筋にはU6.4 またはU5.1の異形PC 鋼棒 (SBPD1275/1420)を用いた.

2.2 加力・測定

加力方法を図-2 に示す.水平力の加力は,対向した2 台のアクチュエータによって,柱に逆対称曲げが作用す るように行った.鉛直方向の加力は,中央に配置した2 台の油圧ジャッキと両端に配置した2台の復動油圧 ジャッキにより,軸力の載荷と傾斜調整(上下スタブ面 の平行保持)を同時に行った.加力は,変位制御の正負 交番繰り返し漸増載荷とし,部材角±1/500を1回,± 1/200,±1/100,±1/50を3回,±1/25を2回ずつ繰り 返した.測定は,柱の相対変形,軸方向変形,主筋およ び横補強筋のひずみなどについて行った.

3. 実験結果

3.1 実験結果

基準試験体150-1の破壊進展状況を写真-1 に,各試験 体のせん断力Q-部材角R関係の実験結果を図-3 に示

R=1/200時 Q/BD=9.7N/mm²

R=1/100時 Q/BD=10.9N/mm² (最大耐力)

R=1/50時 Q/BD=10.0N/mm²

R=1/25時 Q/BD=8.6N/mm²

最終加力時

す.写真-1は,正方向加力時の処女載荷・ピーク変形時のひび割れ発生状況であり,図-3中の破線はP-効果を示している.各試験体とも部材角R=1/500の加力では,

表-2 コンクリートの調合と材料試験結果 Mix Design and Test Result of Concrete

水結合材比 (%)	結合材 (kg/m ³)	水 (kg/m ³)	粗骨材 (kg/m ³)	細骨材 (kg/m ³)	в (N/mm ²)	E (kN/mm ²)	
15.0	1000	150	871	461	147	42.9	0.25
結合材 早強ポルトランドヤメント:スラグ石膏:シリカフューム=7:2:1						1(質量比	:)

表-3 鉄筋の材料特性

鉄筋の材料特性

Mechanical Properties of Steel Reinforcement

鉄筋種別	降伏点 (N/mm ²)	引張強さ (N/mm ²)	ヤング係数 (kN/mm ²)	伸び (%)
	757	972	193	8.8
D16 (PCa 試験体)	747	955	195	11.4
U6.4 (横補強筋)	1460	1482	206	8.4
U5.1 (横補強筋)	1312	1492	196	7.4

図-2 加力方法 Loading Setup

写真-1 破壊進展状況(150-1試験体) Crack Pattern

図-3 せん断力 - 部材角関係の実験結果 Load - Deformation Relationship

ひび割れはほとんど観察されなかった.以下に各試験体の実験結果の概要を示す.

(1) 150-1, 2, 3

R=1/200の加力で,曲げひび割れとせん断ひび割れが 発生した.基準試験体150-1のR=1/200ピーク時のせん 断応力度は (Q/BD)=9.7 N/mm²と非常に大きなレベルで あるにもかかわらず,数本のひび割れしか発生しておら ず,また,それらのひび割れは除荷時には完全に閉合し ており,損傷は極めて少ない.R=1/100の加力で,圧縮 側かぶりコンクリートの急激な圧壊と主筋の圧縮降伏が 観察され,最大耐力となった.R=1/25の加力においても 顕著な耐力低下はみられず,履歴ループはエネルギー吸 収能力の高い紡錘型となっている.基準試験体150-1と PCa試験体150-3 に明確な違いはみられない. (2) 150-4, 5

150-1,2,3と同様に,R=1/200の加力で,曲げひび割れ とせん断ひび割れが発生した.150-4はR=1/200の加力 で,150-5はR=1/100の加力で最大耐力となった.両試験 体とも,R=1/100の繰り返し載荷時にせん断ひび割れ幅 の拡大と耐力低下が顕著となり,R=1/50の加力で横補強 筋が破断してせん断破壊した.150-4と比較して,PCa試 験体である150-5の方が,繰り返し載荷による耐力低下 が少ない傾向にある.

(3) 150-6

他の試験体と同様に,R=1/200の加力で,曲げひび割れとせん断ひび割れが発生した.150-1,2,3ではR=1/100の加力で,圧縮側かぶりコンクリートの急激な圧壊が観察されているが,150-6では圧壊は発生せず,R=1/50の

加力まで耐力は上昇した.R=1/25の繰り返し載荷時に, ループ形状が逆S字型に移行しはじめ,耐力低下が顕著 となった.

4. 結果の検討

4.1 横補強筋のひずみ

基準試験体 150-1 とせん断破壊型試験体 150-4 の試験 区間内横補強筋のひずみ分布を図-4 に示す 図-4 は正方 向の1回目加力ピーク時の結果であり,外周筋と中子筋 のひずみ分布を比較して示している.せん断ひび割れ発 生直後のR=1/200の加力では,外周筋と中子筋のひずみ に差はみられない.両試験体とも,横補強筋のひずみ分 布は,柱内法高さの中央付近を頂点とする山形の形状と なっている.

150-1では,R=1/100以降,中子筋のひずみが外周筋よ りも大きい傾向にある.また,R=1/50の加力時まで横補 強筋は降伏しておらず,弾性範囲内にとどまっている. せん断破壊型の150-4では,R=1/100の加力で外周筋,中 子筋ともひずみが4500µ程度のかなり大きな値となって いる.その後の繰り返し加力でひずみがさらに増加して 降伏し,R=1/50の加力で破断に至った.

4.2 軸方向变形

超高強度コンクリートでは,圧縮強度の上昇に比例し てヤング係数は増加しないため,軸方向変形についての 検討が重要となる.各試験体の軸方向変形と部材角の関 係を図-5に示す.縦軸は試験区間の軸方向変形を内法高 さで除してひずみに換算したものである.

150-1はR=1/50の加力以降,軸方向変形の増加が顕著 となっているが,150-1 150-2 150-6と主筋量が多くな るに従い,軸方向変形の増加は少なくなっている.せん 断破壊型の150-4,150-5は,せん断ひび割れの拡大が顕 著となったR=1/100の加力以降,軸方向変形は急増して いる.また,現場打設を想定した試験体と比較して, PCa試験体の軸方向変形は小さい傾向にある.

4.3 变形成分

実験では試験区間内の変位測定を図-6 に示す方法で 行っており,試験区間の変形成分を,曲げ変形,スタブ からの主筋の抜け出しによる回転変形,せん断変形の3 成分に分離することができる.

基準試験体150-1とせん断破壊型試験体150-4の変形成 分の推移を図-7 に示す。図-7 の曲げ変形は,図-6 中の上 部と下部の範囲の曲げ変形と主筋の抜け出しによる回転 変形の和であり,反曲点位置を柱内法高さ中央として算 出した.

図-4 横補強筋のひずみ分布 Strain Distribution of Lateral Reinforcement

両試験体とも加力初期のR=1/500では,曲げ変形成分 が80%以上を占めている.加力の進展とともに,曲げ変 形成分が減少しせん断変形成分が増加しており,せん断 破壊型の150-4ではせん断変形成分の増加が特に顕著であ る.また,中央部のせん断変形成分が,上部と下部のせ ん断変形と比較して,大きくなっており,横補強筋のひ

ずみ分布と対応している.

4.4 終局耐力

参考文献1)に示した100N/mm²級の実験の No.2試験体(以下100-2とする)および本実 験の基準試験体150-1の曲げモーメント - 部 材角関係の実験結果上に,曲げ耐力計算値を 図示したものを図-8に示す.100-2はコンク リート強度以外の要因が150-1とほぼ同様の 試験体である.曲げ耐力は,コンクリートの 圧縮応力分布を等価な矩形分布(ストレスプ ロック)に置換し,平面保持を仮定して算出

した. 圧縮縁の終局ひずみとストレスブロックの設定 は,ACI318規準(以下ACIとする)およびNew RC 報告 書²⁾(以下New RC とする)に示されている方法によっ て行った.ACIではストレスプロック係数 1を 1 0.65としているが,超高強度コンクリートの応力-ひず み関係は直線的で軟化域が少ないことを考慮し,本報で は,応力分布が三角形分布の場合,すなわち 1 0.50と 仮定した場合の曲げ耐力も合わせて算出した.また, New RC の方法では,横補強筋によって拘束されている コア部分のみを考慮した.

図-8 より 100N/mm²級では, いずれの曲げ耐力評価法 の場合でも実験結果は計算値を上回っており, ACIの方 法で 1 0.50 とした場合は, 過度に安全側の評価と なっている.150N/mm²級では, ACIの方法で 1 0.65 とした場合は過大な評価となっており, 1 0.50 とし た場合が実験値との適合性が良い. New RC の方法はコ ンクリート強度によらず評価精度が高い.

最大耐力の実験値と計算値の比較を図-9 に示す .図中のQmax は P- 効果を考慮した最大耐力の実験値, Qsu は New RC 報告書²⁾に示されているせん断耐力の計算値である.Qf は前述のACIの方法で 1 0.50とした場合

図-8 実験結果と曲げ耐力計算値の比較

の曲げ耐力計算値である.

図-9より,150N/mm²級の超高強度コンクリートを用 いた場合でも,上述の各計算方法によって最大耐力およ び破壊モードをある程度の精度で評価することができる と考えられる.ただし,曲げ耐力の評価に用いたコンク リートのストレスブロックの設定には大胆な仮定が含ま れており,かぶりコンクリートの圧壊についても考慮さ れていない.これらの問題点を解決するために短柱圧縮 実験を実施し,応力-ひずみ関係や横補強筋による拘束 効果について継続して検討を行う予定である.

5. まとめ

150N/mm²級の超高強度コンクリートを用いたRC柱の 構造実験を実施し,以下に示す知見を得た.

- ・超高強度材料を使用することによって,部材としての 弾性域を大きく確保でき,損傷を低減することが可能 である.
- ・横補強筋を適切に配筋することにより,部材角1/50以 上の大変形時まで,十分な変形能力とエネルギー吸収 能力を確保することができる.
- ・曲げ耐力は,平面保持の仮定とストレスブロックを適切に設定することによって評価することができる.せん断耐力については,NewRCプロジェクトで示された耐力式によって評価可能である.

参考文献

- 1)小室努,竹崎真一,是永健好,川端一三:超高強度材料を 用いたRC柱の構造性能,日本建築学会大会学術講演梗概集 C-2, pp.37-40,1997.
- 2) 建設省総合技術開発プロジェクト:平成4年度「高強度鉄筋分科会報告書」,pp.4-132-147,「構造性能分科会報告書 .線材WGのまとめ」,1993.