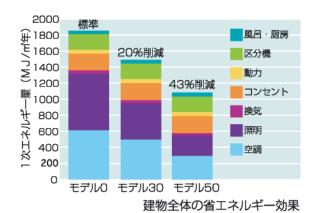
郵便局舎の環境配慮型技術に関する研究-運用エネルギー50%削減モデルの検討-

石黒 邦道· 関根 賢太郎·笠原 勲·宮澤 文弥·野呂 弘子·吉田 太一

Study on design for environment at post office

Kunimichi Ishiguro, Kentarou Sekine, Isao Kasahara, Humiya Miyazawa, Hiroko Noro and Taichi Yosida

	気候	赵	気候区 1 (東京)				
	モデル名		モデルの(標準型)	モデル30(30%削減型)	モデル50(50%削減型)		
建築仕様		壁	20mm	40mm	40mm		
	熟	層間床	_	25mm(郵便予備室の床)	25mm(郵便予備室の床)		
		屋 根	25mm	50mm	50mm		
	緑化	屋上	_	0	0		
		壁面	_	(O)	(O)		
	窓力	郵便課 集配課 事務室	透明6mm +プラインド	L-εガラス6+6+6mm +ブラインド	L- & ガラス6+6+6mm +プラインド		
	窓ガラス	窓口	同上	L-€ガラス6+6+6mm ブラインド エアフローウインドウ	L- e ガラス6+6+6mm ブラインド エアフローウインドウ (+外部探光)		
	3	発着扉	スチール扉	スチール扉	スチール扉		
		庇	-	ルーパー	ルーパー		


モデル郵便局舎の建築仕様(東京)

600												
500										外	気負荷	
€ 400	7	Ξデル	0							室	内負荷	
	ı						Ŧ	デル30		Ŧ	デル50)
カ シーン か 無 300							ı			ı		
7 500												
100												
0		標	準	断	療	全熱交換		HI照明	タスク肝	明	タスク空課	9

省エネ手法とピーク冷房負荷の傾向

	気候区	気候区(東京、札幌)				
	モデル名	モデル0(標準型)	モデル30(30%削減型)	モデル50(50%削減型)		
設備仕様	空調	二次側:AHU+FCU	二次側:AHU+FCU + 全熱交換器	二次側:AHU+FCU + タスク・アンピエント空調 + VAV, VWV		
	電気	白色蛍光灯(FL灯)	Hf 灯	H f 灯 + (初期照度補正、昼光利用) + タスク・アンピエントト照明		
	換 気			省エネルギー制御		

モデル郵便局舎の設備仕様

研究の目的

本研究では、郵便局舎の省エネルギーを推進するために、これまで郵便局舎に適用してきた既存の省エネルギー手法に加え、新たな手法の採用を検討し、シミュレーションを行うことにより、現標準の郵便局舎に比べ、エネルギー量を50%削減する方法を検討しました。また、そのための適用すべき省エネルギー手法や、今後の課題について整理しました。

技術の説明

建築の壁や開口部の断熱、および設備の省エネ方式(空調ではVAV、VWV、タスク空調など、照明ではHf器具、タスク照明など)による省エネ効果をモデル建物でシミュレーションして求めています。

主な結論

標準郵便局舎と比べ、空調、換気、照明のエネルギーが50%削減できることがわかりました。郵便局舎の特性から全体を空調、照明するのではなく、作業エリアのみを空調・照明するタスク・アンビエント方式の採用が効果的で、また建物全体エネルギー削減では太陽光などの自然エネルギーの採用が必要です。