RC耐震壁を用いたアンカーレス耐震補強構法の開発

中村 敏治*1·金田 和浩*2·藤村 太史郎*3·鈴木 裕美*3·前澤 澄夫*3

Keywords: anchorless, post-work anchor, shear wall, strengthening method アンカーレス, あと施工アンカー, RC耐震壁, 耐震補強

1. はじめに

鉄筋コンクリート(以下RC)建物や鉄骨鉄筋コンク リート(以下SRC)建物を耐震補強する場合、一般に、 既存フレームと耐震補強部材とをあと施工アンカーを用 いて一体化する方法が採られる。しかし、あと施工アン カー工事には、振動・騒音・粉塵の発生が伴うため、建 物を使用しながらの工事が困難となり、耐震補強計画・ 実施の促進を妨げる大きな要因となっている。著者らは 鉄骨ブレース・鉄板耐震壁を用いた耐震補強を対象に、 この問題を解決する構工法として、あと施工アンカーを 用いず、既存フレームと補強部材間の接合目地にグラウ トするのみのアンカーレス耐震補強構法を開発・実用化 している。更に、アンカーレス耐震補強のバリエーショ ンを増やすことにより、更に多様な建物への適用が可能 になると考えられる。

本研究では、バリエーションとして鉄骨を現場打ち RC耐震壁に置換した耐震補強を考え、架構の性状や鉄 骨系アンカーレス耐震補強構法の耐力評価式との適合性 等を調べる目的で、1層1スパンを対象に水平加力実験 を行った。

アンカーレス耐震補強架構の性状と評価 方法

アンカーレス耐震補強を適用した架構の耐力は、通常、 一方の柱頭部のパンチングシア破壊で決定し、層間変形 角が 1/100 付近から梁と補強部材との相対変位が顕著に なり、最終的には他方の柱も曲げ又はせん断のいずれか で破壊する。

*1 技術センター建築技術開発部建築生産技術開発室

*3 設計本部構造グループ

梁と補強部材とのせん断力の伝達は、接合目地におけ る地震時の鉛直及び水平せん断力の釣合いから、架構の 反力を上限として圧縮域に生じる摩擦(fQj)を評価す る。これに一方の柱のパンチングシア耐力(pQc)と、 他方の柱の曲げ又はせん断耐力(α Qc, α :変形を考 慮した低減係数)のうち、小さい方を加算した値を基本 の補強耐力(Qu)として算定している。この耐力評価 式を(1)式に示す。

また、架構と補強部材との相対変位を拘束するための 埋込ボルトを梁下面に配して耐力と変形性能を改善する 場合は、その本数(最大8本)に応じてその効果(bQ j)を基本の補強耐力に累加する。耐力評価式を(2)式 に示す。

(グラウトのみの場合)

$Qu = pQc + fQj + \alpha Qc$	(kN)	(1)
(埋込みボルトを設ける場合)		
$Qu = pQc + fQj + \alpha Qc + bQj$	(kN)	(2)

上式は補強部材に鉄骨を用い、終局まで枠、ブレース とも弾性に制限した実験結果に基づく評価である。本研 究では RC 耐震壁を用いて補強部材の塑性化が及ぼす影 響を調べると共に、平面計画上の動線を確保できる開口 壁や、コンクリートの付着力だけで一体化した増打壁の 性能についても検討した。

3. 実験計画

3.1 調査項目

アンカーレス RC 耐震壁で補強した架構の性状
(\$31)

既存架構の構面内に厚さ120mmの壁板をコンクリート で構築する。壁筋は 0.4%程度配するが、柱、梁内への

^{*2} 技術センター知的財産部特許室

RC耐震壁を用いたアンカーレス耐震補強構法の開発

Bar arrangement of specimens

定着は取らず、壁板の上部 100mm 程度に高強度無収縮 グラウトを充填するのみで全体を一体化する。主とし て補強耐力、履歴性状及び破壊形式をこれまでのブレ ース補強と比較し、本補強に応じた F 値を設定する。

(2) 埋込ボルトの効果(\$30)

梁下及びスラブ上に水平接合部での相対変形を拘束す る埋込ボルトを8本設け、耐力や変形性能に及ぼす影響 を調べる。

(3) 出入口開口上部に設ける境界梁(S32)

実物で 1m×2m相当の開口をスパン中央近傍に設け る。通常、地震時に壁板の端部から作用する鉛直せん断 力に対して、既存梁のせん断補強が必要になる。ここで は、開口上部に曲げ降伏しない鉄骨梁を設けて両側の壁 板に定着し、鉄骨梁を通して下層階(基礎)へせん断力を 伝達する。

(4) 既存壁のアンカーレス増打補強(S33)

厚さ 10cm 程度の既存壁にコンクリートを増打して補 強する場合、従来は柱、梁と共に壁にも多数のアンカー を打設するが、壁厚や配筋の制約を受けて定着長を確保 できない場合も多い。増打したコンクリートの付着力だ けで既存壁と一体化した場合、厚さ、強度、壁筋及び定 着条件も異なる2枚の壁において、どれ位の応力また は変形で一体性を保持できなくなり、上記機構が崩れ て破壊するかどうかについて検討する。

3.2 試験体

図-1に試験体の形状および配筋図を示す。試験体は、 既存ラーメン架構を RC 耐震壁で補強した S30、S31 と、 2 枚の RC 耐震壁を鉄骨梁で繋いでその下に開口を設け た S32 及び、非耐力壁にコンクリートを増打した S33 の3 種類、計4体である。

いずれも 1/2 に縮小した1層1スパン RC 架構で、柱 断面 35cm 角、梁 23cm×38cm、スパン 3m、載荷高さ 160cm 等の寸法の他、柱・梁の配筋量も共通である。架 構に定着しない壁筋を有する補強壁を打設した後、梁下 に設けた打設用の隙間(約 100mm)を高強度グラウト 材で充填して全体を一体化するのみである。

従って架構から壁へ伝達されるのは、初期の付着力を 除くと、接合目地を挟んで釣合う圧縮力とその領域にお ける摩擦によるせん断力しかない。この伝達領域を柱フ ェイスから梁せい分と仮定し、梁下及び基礎上面を 6mm 程度目荒しした。 但し S30 だけは、梁下及び基礎上の水平接合部に、 M20 のボルトを 8 本設置し、D13 の添筋で両側から挟 んでずれ変位を拘束した。梁と基礎に穿孔した径 55mm、 深さ 50mm の孔に、先端にナットを付けたM20 のボル トを差込み、ボルト径の2倍+5mm の定着を確保して 壁筋に固定し、基礎上のボルトは打設に先立って各孔に グラウトを充填した。梁下については各孔に空気抜きホ ースを設け、隙間にグラウトを圧入するのと同時に孔の ボルト周りも充填した。

S32 は人が通るための出入口開口(500×1085mm)を 設けた試験体で、補強壁は開口を挟んで並立する2枚の RC 耐震壁(厚さ150mm)と、これらを繋ぐ鉄骨梁から 成る。梁は BH-300*70*6*19 で、左右の壁板に端部を 700mmと900mm埋込んで定着した。鉄骨梁と耐震壁を 確実に一体化するために、支保工を兼ねた溝形鋼[-100*100*5*7.5 を梁下に溶接したが、基礎には定着して いない。材質はフランジのみが SM490 で、それ以外は 全て SS400 である。

開口左右の耐震壁と両者を繋ぐ鉄骨梁で斜め圧縮力を 伝達するため、1枚壁の S30,S31 に比べて剛性・耐力と も低下すると予想される。しかし壁筋を定着しない2枚 の壁が構面内でロッキングすれば、鉛直せん断力で鉄骨 梁のウエブがせん断降伏してエネルギーを吸収すること も考えられる。

S33 は厚さ 60mm の既存壁に 90mm のコンクリートを 増打した試験体であるが、両者を繋ぐ鋼材はセパレータ 以外一切なく、コンクリートの付着力だけで一体化した。 既存壁に配した 0.27%の壁筋は架構内に定着されている が、増打部の 0.44%の壁筋は上記試験体と同様に架構内 に定着されず、またメッシュ筋と同様に先端にはフック もなく耐震壁内部に直線状のまま打込まれている。

なお、S32 以外の 3 体については、壁板の隅角部を補 強する目的で、図示のように D13 を四隅に 1 本づつ配 した。

3.3 使用材料

既存架構および補強耐震壁に用いたコンクリート強度 は呼び強度 Fc13.5、Fc30 であり、各試験体と共通であ る。載荷時材令における圧縮強度を表-1 に示す。また 壁板上部のグラウトは全て 60N/mm² 以上の強度を発現 した。

主筋は柱に 4 (D19+D16)、梁に 4-D19、スラブ部分 には 4-D13 (何れも SD345)を配し、せん断補強筋には D6 (SD295A)を用いた。表-2 に鉄筋の降伏点を示す。

表-1 コンクリート材料試験結果 Test result of concrete

討驗休	既存架構	補強耐震壁	
时间天 144	(N/mm^2)	(N/mm^2)	
S30	22.7	35.5	
S31	21.5	34.3	
S32	21.5	33.9	
S33	22	35.6	

表-2 鉄筋引張試験結果 Test result of bar

「「「「次次	降伏点
呼び住	(N/mm^2)
D6	300
D13	352
D16	382
D19	389

3.4 加力方法

試験体への加力は、柱への軸力載荷と上部梁への正負 繰り返し水平載荷である。柱への軸力載荷は N=300kN (σ₀=2.5N/mm²)の一定軸力とし、水平加力時にも一 定に保った。正負繰り返し水平載荷はアクチュエータを 用いて載荷し、梁両端からの押し・引きの両方で与えた。 図-2に加力方法の模式図を示す。

載荷履歴は層間変形角で制御した。層間変形角 1/2000、1/1000、1/500 で正負載荷を各1回行った後、 層間変形角 1/300、1/200、1/100 で正負載荷を各2回行 う。その後、層間変形角 1/50 まで正あるいは負載荷を 行い、耐力の低下傾向を調べた。

4. 実験結果

4.1 変形性状とひび割れ状況

実験より得られた全試験体の荷重-変形関係を図-3

に、層間変形角 1/100 におけるひび割れ状況を図-4 に示 す。全試験体とも、層間変形角 R=1/215~1/145 で最大 耐力に達し、その後、緩やかな耐力低下を示すものの、 R = 1/50 以降は安定した復元力特性を示している。S32 を除くすべての試験体で引張側柱頭にパンチングシア破 壊が発生し、これにより最大耐力が決定した。

躯体と補強耐震壁間の接合目地に何も施さない S31 は、初期加力時(R=1/2000)から接合目地の付着が失 われ、繰返し載荷により徐々に剛性が低下し、R=1/145 で最大耐力に達した。最大耐力近傍で引張側柱頭にパン チングシアによるせん断ひび割れが発生し始め、耐力の 低下とともにせん断ひび割れの発生が顕著となったが、 急激な耐力低下は示していない。また、補強耐震壁のせ ん断ひび割れは数本程度の発生に留まり、顕著な破壊は 生じなかった。

上下梁に各 8-M20 の埋込みボルトを施した S30 も、 S31 とほぼ同様な性状を示したが、埋込みボルトによる 躯体と耐震壁の結合の効果により、S31 に比べ約 1.3 倍 程度の剛性と最大耐力を示した。なお、最大耐力時の変 形は R=1/195 であり S31 よりも小さい。また、引張側 柱頭のパンチングシア破壊が顕著になったのは、 R=1/100 付近であった。

耐震壁の中央付近に約 0.5×1.0m の開口を有する S32 も最大耐力時までは S30、S31 と同様の挙動を示した。 R=1/215 で最大耐力に達した後、開口上部の鉄骨境界梁 が軸圧縮と等曲げ状態で降伏し、開口下部が縮まる変形 性状を示した。これにより開口部付近の補強耐震壁が上 部の梁を押上げる状態となり、これによって生じる摩擦 力で水平耐力を保持していたものと考えられる。このた め、S32 では柱頭のパンチングシア破壊は生じなかった。

既存壁に耐震壁を増打ちした S33 の変形性状は、S30 と同様に安定した性状を示した。壁筋が柱・梁に定着さ れている既存壁は、壁上部に多数のせん断ひび割れが生 じているのに対し、アンカーされていない増打ち壁のせ ん断ひび割れは、数本発生したのみであった。R=1/200 近傍で最大耐力を生じた後、既存壁のせん断破壊が進行 し、その後、引張側柱頭のパンチングシア破壊が顕著と なった。

4.2 接合目地部の変形性状

柱高さ中央位置での柱と補強耐震壁との鉛直相対変位 を図-5 に示す。図中の縦軸は水平荷重、横軸は相対変 位で、横軸の正側は耐震壁の梁方向への相対変位、負側

=+ 旺全 /+	計算値	(kN)	実験結果(kN)		実験値/計算値			
記马史14	補強前	補強後	最大値	R=1/100	R=1/50	最大値	R=1/100	R=1/50
S30	305	1225	1466	1288	858	1.20	1.05	0. 70
S31	301	817	1141	975	857	1.40	1.19	1.05
(\$32)	302	822	(1009)	(930)	(1000)	(1.23)	(1. 13)	(1. 22)
S33	472	995	1309	1161	987	1.32	1.17	0.99

~	
	Comparison between experimental strength and calculation strength

表-3 実験耐力と計算耐力の比較

は基礎方向への相対変位を示す。

同図より、耐震壁端部が梁方向へ浮き上がる変位量と 基礎方向へ沈み込む変位量を比較すると、S30 ではやや 基礎方向への変位量の方が大きいものの大きな差はない。 しかし、S31、S33 では基礎方向への変位量の方が2倍 程度大きい。これは、壁端部の浮き上がりを、梁を介し て柱で受けるため、柱と壁の相対変位が小さくなるのに 対し、圧縮側の壁端部では塑性化して伸びた柱に対する 相対変位であるため、大きな変位量になったと思われる。

4.3 耐力評価

表-3 に実験より得られた各試験体の最大耐力と計算 耐力の比較を示す。計算耐力に用いた耐力評価は(1) 式、即ち鉄骨ブレースを対象に摩擦によるせん断伝達を 評価する耐力式を準用した。また、S33 については、既 存壁の終局せん断耐力に摩擦によるせん断伝達分を加算 することにより評価した。なお、S32 は変形性状および 破壊形式が異なるため、参考として掲載するに留める。

同表に示すように、実験により得られた最大耐力は全 試験体とも計算値を上回っており、計算値に対する実験 値の比は $1.20 \sim 1.40$ である。また、最大耐力後の耐力と して R=1/100 時の実験耐力を計算値と比較すると、1.05 ~ 1.19 でありほぼ実験値と計算値は等しい。なお、同様 に R=1/50 時の実験耐力について比較すると、 $0.70 \sim 1.05$ であり、実験値は計算値を下回る傾向にある。

5. まとめ

RC 耐震壁を用いた1層1スパンのアンカーレス耐震 補強架構を対象に、繰返し載荷実験を行った結果、以下 のような知見を得た。

- アンカーレス耐震補強に RC 耐震壁を用いても急激な耐力劣化を生じることはなく、安定した荷重-変形関係を示す。
- 2) アンカーレス RC 耐震壁を用いた架構の耐力は、 鉄骨ブレース又は鉄板耐震壁を用いたアンカーレス 耐震補強の耐力評価式で評価でき、R=1/100 まで安 全側に評価する。
- 3) 上記 1),2)のことから、アンカーレス RC 耐震壁を 用いた架構の靭性指標 F は、1.5 以上が期待できる。

参考文献

- 金田,前澤,菊地,藤村:摩擦によるせん断伝達を評価した耐震補強(その 6),日本建築学会大会梗概集,C-2,2002.8
- 2)金田,菊地:鋼-コンクリート接合の摩擦特性を利用した 耐震補強法,JCI,耐震補強の評価に関する研究委員会論文 集,pp553~560,2000.6
- 3)前澤,菊地,藤村,金田:摩擦によるせん断伝達を評価した耐震補強(その7,8),日本建築学会大会梗概集,C-2,2003.9